Science Enabled by Specimen Data

Azevedo, J. A. R., Guedes, T. B., Nogueira, C. de C., Passos, P., Sawaya, R. J., Prudente, A. L. C., … Antonelli, A. (2019). Museums and cradles of diversity are geographically coincident for narrowly distributed Neotropical snakes. Ecography, 43(2), 328–339. doi:10.1111/ecog.04815 https://doi.org/10.1111/ecog.04815

Factors driving the spatial configuration of centres of endemism have long been a topic of broad interest and debate. Due to different eco‐evolutionary processes, these highly biodiverse areas may harbour different amounts of ancient and recently diverged organisms (paleo‐ and neo‐endemism, respecti…

Le Sage, E. H., Duncan, S. I., Seaborn, T., Cundiff, J., Rissler, L. J., & Crespi, E. J. (2021). Ecological adaptation drives wood frog population divergence in life history traits. Heredity. doi:10.1038/s41437-021-00409-w https://doi.org/10.1038/s41437-021-00409-w

Phenotypic variation among populations is thought to be generated from spatial heterogeneity in environments that exert selection pressures that overcome the effects of gene flow and genetic drift. Here, we tested for evidence of isolation by distance or by ecology (i.e., ecological adaptation) to g…

Andersen, D., Borzée, A., & Jang, Y. (2021). Predicting global climatic suitability for the four most invasive anuran species using ecological niche factor analysis. Global Ecology and Conservation, 25, e01433. doi:10.1016/j.gecco.2020.e01433 https://doi.org/10.1016/j.gecco.2020.e01433

Invasive species have a massive impact on their environment and predicting geographical zones at risk of invasion is paramount to the control of further invasions. Invasive anurans are particularly detrimental to native amphibian species, other vertebrates, and even aquaculture through competition, …

Seaborn, T., Goldberg, C. S., & Crespi, E. J. (2020). Drivers of distributions and niches of North American cold‐adapted amphibians: evaluating both climate and land use. Ecological Applications. doi:10.1002/eap.2236 https://doi.org/10.1002/eap.2236

Species distribution estimates are often used to understand the niche of a species; however, these are often based solely on climatic predictors. When the influences of biotic factors are ignored, erroneous inferences about range and niche may be made. We aimed to integrate climate data with a uniqu…

Zizka, A., Antunes Carvalho, F., Calvente, A., Rocio Baez-Lizarazo, M., Cabral, A., Coelho, J. F. R., … Antonelli, A. (2020). No one-size-fits-all solution to clean GBIF. PeerJ, 8, e9916. doi:10.7717/peerj.9916 https://doi.org/10.7717/peerj.9916

Species occurrence records provide the basis for many biodiversity studies. They derive from georeferenced specimens deposited in natural history collections and visual observations, such as those obtained through various mobile applications. Given the rapid increase in availability of such data, th…

Li, X., Li, B., Wang, G., Zhan, X., & Holyoak, M. (2020). Deeply digging the interaction effect in multiple linear regressions using a fractional-power interaction term. MethodsX, 7, 101067. doi:10.1016/j.mex.2020.101067 https://doi.org/10.1016/j.mex.2020.101067

In multiple regression Y ~ β0 + β1X1 + β2X2 + β3X1 X2 + ɛ., the interaction term is quantified as the product of X1 and X2. We developed fractional-power interaction regression (FPIR), using βX1M X2N as the interaction term. The rationale of FPIR is that the slopes of Y-X1 regression along the X2 gr…

Mothes, C. C., Howell, H. J., & Searcy, C. A. (2020). Habitat suitability models for the imperiled wood turtle (Glyptemys insculpta) raise concerns for the species’ persistence under future climate change. Global Ecology and Conservation, 24, e01247. doi:10.1016/j.gecco.2020.e01247 https://doi.org/10.1016/j.gecco.2020.e01247

The use of ecological niche models to predict how future climate change may impact habitat suitability is a critical component of imperiled species management. These models allow for the identification of areas with high future suitability that will support the persistence of the species. We develop…

Pili, A. N., Tingley, R., Sy, E. Y., Diesmos, M. L. L., & Diesmos, A. C. (2020). Niche shifts and environmental non-equilibrium undermine the usefulness of ecological niche models for invasion risk assessments. Scientific Reports, 10(1). doi:10.1038/s41598-020-64568-2 https://doi.org/10.1038/s41598-020-64568-2

Niche shifts and environmental non-equilibrium in invading alien species undermine niche-based predictions of alien species’ potential distributions and, consequently, their usefulness for invasion risk assessments. Here, we compared the realized climatic niches of four alien amphibian species (Hyla…

Weterings, R., Barbetti, M., & Buckley, H. L. (2019). Hypothesis: Do invasive house geckos exacerbate dengue fever epidemics? Biological Invasions. doi:10.1007/s10530-019-02066-x https://doi.org/10.1007/s10530-019-02066-x

Dengue fever is a mosquito-borne disease that has undergone a marked rise in incidence since the 1950s, throughout the world’s tropical regions. Here, we present a hypothesis that this rise in incidence may have been exacerbated by the invasion of house geckos, due to their role in the mosquito vect…

Liu, X., Blackburn, T. M., Song, T., Li, X., Huang, C., & Li, Y. (2019). Risks of Biological Invasion on the Belt and Road. Current Biology, 29(3), 499–505.e4. doi:10.1016/j.cub.2018.12.036 https://doi.org/10.1016/j.cub.2018.12.036

China’s Belt and Road Initiative (BRI) is an unprecedented global development program that involves nearly half of the world’s countries [1]. It not only will have economic and political influences, but also may generate multiple environmental challenges and is a focus of considerable academic and p…