Science Enabled by Specimen Data

Sumbembayev, A. A., S. Nowak, A. Burzacka-Hinz, A. Kosiróg-Ceynowa, and D. L. Szlachetko. 2023. New and Noteworthy Taxa of the Genus Dactylorhiza Necker ex Nevski (Orchidaceae Juss.) in Kazakhstan Flora and Its Response to Global Warming. Diversity 15: 369.

A critical study of the herbarium material representing the orchid genus Dactylorhiza Necker ex Nevski in Kazakhstan was conducted in 2019–2020. The information on the species composition was clarified. Dactylorhiza fuchsii subsp. hebridensis (Wilmott) Soó and D. × kerneri (Soó) Soó were identified for the first time in the country. New taxa were noted for individual botanical and geographical areas. All taxa were presented in the list and annotated with studied herbarium materials from the Kazakhstan area. Based on the collected and available locations for the studied taxa, distribution modeling was carried out for the four taxa (D. incarnata, D. majalis subsp. baltica, D. salina, and D. umbrosa). Bioclimatic data for the present and future (2041–2060) based on four possible scenarios were used. The occurrence of Dactylorhiza representatives in Kazakhstan is threatened by global climate warming. It is likely that some of them may not occur in the country in the future (D. incarnata and D. majalis subsp. baltica), losing up to 99.87% of their modern range or their range may be significantly reduced (D. salina and D. umbrosa), losing up to 80.83% of their present distribution. It is worth considering global changes in planning conservation activities and identifying areas that may play a significant role in the functioning of the national flora in the future.

Denk, T., G. W. Grimm, A. L. Hipp, J. M. Bouchal, E.-D. Schulze, and M. C. Simeone. 2023. Niche evolution in a northern temperate tree lineage: biogeographic legacies in cork oaks (Quercus sect. Cerris). Annals of Botany.

Abstract Background and Aims Cork oaks (Quercus sect. Cerris) comprise 15 extant species in Eurasia. Despite being a small clade, they display a range of leaf morphologies comparable to the largest sections (>100 spp.) in Quercus. Their fossil record extends back to the Eocene. Here, we explore how cork oaks achieved their modern ranges and how legacy effects may explain niche evolution in modern species of section Cerris and its sister section Ilex, the holly oaks. Methods We inferred a dated phylogeny for cork and holly oaks using a reduced-representation next-generation sequencing method, restriction-site associated DNA sequencing (RAD-seq) and used D-statistics to investigate gene flow hypotheses. We estimated divergence times using a fossilized birth-death (FBD) model calibrated with 47 fossils. We used Köppen profiles, selected bioclimatic parameters, and forest biomes occupied by modern species to infer ancestral climatic and biotic niches. Key Results East Asian and Western Eurasian cork oaks diverged initially in the Eocene. Subsequently, four Western Eurasian lineages (subsections) differentiated during the Oligocene and Miocene. Evolution of leaf size, form, and texture partly correlates with multiple transitions from ancestral humid temperate climates to Mediterranean, arid, and continental climates. Distantly related but ecologically similar species converged on similar leaf traits in the process. Conclusions Originating in temperate (frost-free) biomes, Eocene to Oligocene ranges of the primarily deciduous cork oaks were restricted to higher latitudes (Siberia to north of Paratethys). Members of the evergreen holly oaks (sect. Ilex) also originated in temperate biomes but migrated south- and south-westwards into then-(sub)tropical southern China and south-eastern Tibet during the Eocene, then westwards along existing pre-Himalayan mountain ranges. Divergent biogeographic histories and deep-time phylogenetic legacies—in cold and drought tolerance, nutrient storage, and fire resistance—thus account for the modern species mosaic of Western Eurasian oak communities, which comprise oaks belonging to four sections.

Reichgelt, T., A. Baumgartner, R. Feng, and D. A. Willard. 2023. Poleward amplification, seasonal rainfall and forest heterogeneity in the Miocene of the eastern USA. Global and Planetary Change 222: 104073.

Paleoclimate reconstructions can provide a window into the environmental conditions in Earth history when atmospheric carbon dioxide concentrations were higher than today. In the eastern USA, paleoclimate reconstructions are sparse, because terrestrial sedimentary deposits are rare. Despite this, the eastern USA has the largest population and population density in North America, and understanding the effects of current and future climate change is of vital importance. Here, we provide terrestrial paleoclimate reconstructions of the eastern USA from Miocene fossil floras. Additionally, we compare proxy paleoclimate reconstructions from the warmest period in the Miocene, the Miocene Climatic Optimum (MCO), to those of an MCO Earth System Model. Reconstructed Miocene temperatures and precipitation north of 35°N are higher than modern. In contrast, south of 35°N, temperatures and precipitation are similar to today, suggesting a poleward amplification effect in eastern North America. Reconstructed Miocene rainfall seasonality was predominantly higher than modern, regardless of latitude, indicating greater variability in intra-annual moisture transport. Reconstructed climates are almost uniformly in the temperate seasonal forest biome, but heterogeneity of specific forest types is evident. Reconstructed Miocene terrestrial temperatures from the eastern USA are lower than modeled temperatures and coeval Atlantic sea surface temperatures. However, reconstructed rainfall is consistent with modeled rainfall. Our results show that during the Miocene, climate was most different from modern in the northeastern states, and may suggest a drastic reduction in the meridional temperature gradient along the North American east coast compared to today.

Wilson Brown, M. K., and E. B. Josephs. 2023. Evaluating niche changes during invasion with seasonal models in Capsella bursa‐pastoris. American Journal of Botany.

Premise Researchers often use ecological niche models to predict where species might establish and persist under future or novel climate conditions. However, these predictive methods assume species have stable niches across time and space. Furthermore, ignoring the time of occurrence data can obscure important information about species reproduction and ultimately fitness. Here, we assess compare ecological niche models generated from full-year averages to seasonal models Methods In this study, we generate full-year and monthly ecological niche models for Capsella bursa-pastoris in Europe and North America to see if we can detect changes in the seasonal niche of the species after long-distance dispersal. Key Results We find full-year ecological niche models have low transferability across continents and there are continental differences in the climate conditions that influence the distribution of C. bursa-pastoris. Monthly models have greater predictive accuracy than full-year models in cooler seasons, but no monthly models are able to predict North American summer occurrences very well. Conclusions The relative predictive ability of European monthly models compared to North American monthly models suggests a change in the seasonal timing between the native range to the non-native range. These results highlight the utility of ecological niche models at finer temporal scales in predicting species distributions and unmasking subtle patterns of evolution.

Pan, Y., J. García-Girón, and L. L. Iversen. 2023. Global change and plant-ecosystem functioning in freshwaters. Trends in Plant Science.

Freshwater ecosystems are of worldwide importance for maintaining biodiversity and sustaining the provision of a myriad of ecosystem services to modern societies. Plants, one of the most important components of these ecosystems, are key to water nutrient removal, carbon storage, and food provision. Understanding how the functional connection between freshwater plants and ecosystems is affected by global change will be key to our ability to predict future changes in freshwater systems. Here, we synthesize global plant responses, adaptations, and feedbacks to present-day and future freshwater environments through trait-based approaches, from single individuals to entire communities. We outline the transdisciplinary knowledge benchmarks needed to further understand freshwater plant biodiversity and the fundamental services they provide.

Hinojosa-Espinosa, O., D. Potter, M. Ishiki, E. Ortiz, and J. L. Villaseñor. 2021. Dichrocephala integrifolia (Astereae, Asteraceae), a new exotic genus and species for Mexico and second record for the New World. Botanical Sciences 99: 708–716.

Background: Dichrocephala is an Old-World genus of the tribe Astereae within the family Asteraceae. One species, D . integrifolia , has been recently reported as introduced in the New World from a pair of collections from Guatemala. During field work in the state of Chiapas in southern Mexico, the species was found and collected. This is the first record of both the genus and species in Mexico and the second record for these taxa in the Americas.
 Question: Can D . integrifolia occur in more areas in the New World besides those known from Guatemala and Chiapas?
 Studied species: Dichrocephala integrifolia 
 Study site and dates: Mexico, Central America, and the Caribbean.
 Methods: An ecological niche model was made and it was projected into the New World.
 Results: The ecological niche model predicts the records of D. integrifolia in the New World in addition to other ecologically suitable areas, mostly in pine-oak forests in Mexico and Central America and zones with humid mountain and pine forest in the Caribbean. Moreover, a morphological description and illustrations of the species are provided to help with its identification.
 Conclusions: It is desirable to avoid the further spreading of D . integrifolia in the New World. Although this species is not considered as invasive, it seems to have a high dispersal potential and the ecological niche modelling indicates larger regions in the Americas that might be affected.

Heo, N., D. J. Leopold, M. V. Lomolino, S. Yun, and D. D. Fernando. 2022. Global and regional drivers of abundance patterns in the hart’s tongue fern complex (Aspleniaceae). Annals of Botany.

Abstract Background and Aims The hart’s tongue fern (HTF) complex is a monophyletic group composed of five geographically segregated members with divergent abundance patterns across its broad geographic range. We postulated hierarchical systems of environmental controls in which climatic and land-use change drive abundance patterns at the global scale, while various ecological conditions function as finer-scale determinants that further increase geographic disparities at regional to local scales. Methods After quantifying the abundance patterns of the HTF complex, we estimated their correlations with global climate and land-use dynamics. Regional determinants were assessed using boosted regression tree models with 18 potential ecological variables. Moreover, we investigated long-term population trends in the U.S. to understand the interplay of climate change and anthropogenic activities on a temporal scale. Key Results Latitudinal climate shifts drove latitudinal abundance gradients, and regionally different levels of land-use change resulted in global geographic disparities in population abundance. At a regional scale, population isolation, which accounts for rescue effects, played an important role, particularly in Europe and East Asia where several hotspots occurred. Furthermore, the variables most strongly influencing abundance patterns greatly differed by region: precipitation seasonality in Europe, spatial heterogeneity of temperature and precipitation in East Asia, and magnitudes of past climate change, temperature seasonality, and edaphic conditions in North America. In the U.S., protected populations showed increasing trends compared to unprotected populations at the same latitude, highlighting the critical role of habitat protection in conservation measures. Conclusions Geographic disparities in the abundance patterns of HTF complex were determined by hierarchical systems of environmental controls, wherein climatic and land-use dynamics act globally but are modulated by various regional and local determinants operating at increasingly finer scales. We highlighted that fern conservation must be tailored to particular geographic contexts and environmental conditions by incorporating a better understanding of the dynamics acting at different spatiotemporal scales.

García, L., J. Veneros, S. Chavez, M. Oliva, and N. B. Rojas Briceño. 2022. World historical mapping and potential distribution of Cinchona spp. in Peru as a contribution for its restoration and conservation. Journal for Nature Conservation: 126290.

Peru is a megadiverse country in neotropical flora and is home to an important genus of plants called Cinchona and commonly all its individual species are called Cinchona Tree (Cinchona spp.), which represents the national tree for this nation. This country has 18 species, a group of these species are listed as vulnerable, endangered, and their population trend is currently unknown. This genus is at risk of extinction due to overexploitation for its medicinal, constructive and food uses. The IUCN also mentions that increased species assessments and records will help make the IUCN Red List a “barometer of life”. Based on the fact that understanding the effects of environmental change on ecosystems requires the identification of historical and current baselines, which can act as reference conditions, this research generated georeferenced global historical maps of Cinchona spp. and then determined the appropriate sites based on environmental variables using the Maxent software and established the probabilities of occurrence of this genus in Peru to establish priority areas for its conservation and restoration. Four maps were obtained, one for each centennial, from 1737 to the present, with 10,860 occurrences of Cinchona. In the MaxEnt modeling, 10.30 % (13 3172.56 km2) and 19.20 % (24 7371.32 km2) of Peru's surface area had high (> 0.6) and moderate (0.4 - 0.6) probabilities, respectively, of hosting Cinchona. Only 7.6 % (17 305.32 km2) and 22.0 % (50 153.73 km2) of the areas with high and moderate distribution potential, respectively, were covered by natural protected areas. Likewise, 11.90 % (21 738.75 km2) and 33.20 % (60 789.17 km2) of the high and moderate probability lands, respectively, correspond to degraded areas (DAs) and, therefore, are considered a priority for restoration with Cinchona spp. The results may stimulate the rethinking of decision making for the National Action Plan for Reforestation with Species of the Genus Cinchona and other plans or tools for Cinchona conservation in Peru.

Kroonen, G., A. Jakob, A. I. Palmér, P. van Sluis, and A. Wigman. 2022. Indo-European cereal terminology suggests a Northwest Pontic homeland for the core Indo-European languages S. Wichmann [ed.],. PLOS ONE 17: e0275744.

Questions on the timing and the center of the Indo-European language dispersal are central to debates on the formation of the European and Asian linguistic landscapes and are deeply intertwined with questions on the archaeology and population history of these continents. Recent palaeogenomic studies support scenarios in which the core Indo-European languages spread with the expansion of Early Bronze Age Yamnaya herders that originally inhabited the East European steppes. Questions on the Yamnaya and Pre-Yamnaya locations of the language community that ultimately gave rise to the Indo-European language family are heavily dependent on linguistic reconstruction of the subsistence of Proto-Indo-European speakers. A central question, therefore, is how important the role of agriculture was among the speakers of this protolanguage. In this study, we perform a qualitative etymological analysis of all previously postulated Proto-Indo-European terminology related to cereal cultivation and cereal processing. On the basis of the evolution of the subsistence strategies of consecutive stages of the protolanguage, we find that one or perhaps two cereal terms can be reconstructed for the basal Indo-European stage, also known as Indo-Anatolian, but that core Indo-European, here also including Tocharian, acquired a more elaborate set of terms. Thus, we linguistically document an important economic shift from a mostly non-agricultural to a mixed agro-pastoral economy between the basal and core Indo-European speech communities. It follows that the early, eastern Yamnaya of the Don-Volga steppe, with its lack of evidence for agricultural practices, does not offer a perfect archaeological proxy for the core Indo-European language community and that this stage of the language family more likely reflects a mixed subsistence as proposed for western Yamnaya groups around or to the west of the Dnieper River.

Perez‐Navarro, M. A., O. Broennimann, M. A. Esteve, G. Bagaria, A. Guisan, and F. Lloret. 2022. Comparing climatic suitability and niche distances to explain populations responses to extreme climatic events. Ecography.

Habitat suitability calculated from species distribution models (SDMs) has been used to assess population performance, but empirical studies have provided weak or inconclusive support to this approach. Novel approaches measuring population distances to niche centroid and margin in environmental space have been recently proposed to explain population performance, particularly when populations experience exceptional environmental conditions that may place them outside of the species niche. Here, we use data of co‐occurring species' decay, gathered after an extreme drought event occurring in the southeast of the Iberian Peninsula which highly affected rich semiarid shrubland communities, to compare the relationship between population decay (mortality and remaining green canopy) and 1) distances between populations' location and species niche margin and centroid in the environmental space, and 2) climatic suitability estimated from frequently used SDMs (here MaxEnt) considering both the extreme climatic episode and the average reference climatic period before this. We found that both SDMs‐derived suitability and distances to species niche properly predict populations performance when considering the reference climatic period; but climatic suitability failed to predict performance considering the extreme climate period. In addition, while distance to niche margins accurately predict both mortality and remaining green canopy responses, centroid distances failed to explain mortality, suggesting that indexes containing information about the position to niche margin (inside or outside) are better to predict binary responses. We conclude that the location of populations in the environmental space is consistent with performance responses to extreme drought. Niche distances appear to be a more efficient approach than the use of climate suitability indices derived from more frequently used SDMs to explain population performance when dealing with environmental conditions that are located outside the species environmental niche. The use of this alternative metrics may be particularly useful when designing conservation measures to mitigate impacts of shifting environmental conditions.