Science Enabled by Specimen Data

Bürger, M., and J. Chory. 2024. A potential role of heat‐moisture couplings in the range expansion of Striga asiatica. Ecology and Evolution 14. https://doi.org/10.1002/ece3.11332

Parasitic weeds in the genera Orobanche, Phelipanche (broomrapes) and Striga (witchweeds) have a devastating impact on food security across much of Africa, Asia and the Mediterranean Basin. Yet, how climatic factors might affect the range expansion of these weeds in the context of global environmental change remains unexplored. We examined satellite‐based environmental variables such as surface temperature, root zone soil moisture, and elevation, in relation to parasitic weed distribution and environmental conditions over time, in combination with observational data from the Global Biodiversity Information Facility (GBIF). Our analysis reveals contrasting environmental and altitude preferences in the genera Striga and Orobanche. Asiatic witchweed (Striga asiatica), which infests corn, rice, sorghum, and sugar cane crops, appears to be expanding its range in high elevation habitats. It also shows a significant association with heat‐moisture coupling events, the frequency of which is rising in such environments. These results point to geographical shifts in distribution and abundance in parasitic weeds due to climate change.

Serra‐Diaz, J. M., J. Borderieux, B. Maitner, C. C. F. Boonman, D. Park, W. Guo, A. Callebaut, et al. 2024. occTest: An integrated approach for quality control of species occurrence data. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13847

Aim Species occurrence data are valuable information that enables one to estimate geographical distributions, characterize niches and their evolution, and guide spatial conservation planning. Rapid increases in species occurrence data stem from increasing digitization and aggregation efforts, and citizen science initiatives. However, persistent quality issues in occurrence data can impact the accuracy of scientific findings, underscoring the importance of filtering erroneous occurrence records in biodiversity analyses.InnovationWe introduce an R package, occTest, that synthesizes a growing open‐source ecosystem of biodiversity cleaning workflows to prepare occurrence data for different modelling applications. It offers a structured set of algorithms to identify potential problems with species occurrence records by employing a hierarchical organization of multiple tests. The workflow has a hierarchical structure organized in testPhases (i.e. cleaning vs. testing) that encompass different testBlocks grouping different testTypes (e.g. environmental outlier detection), which may use different testMethods (e.g. Rosner test, jacknife,etc.). Four different testBlocks characterize potential problems in geographic, environmental, human influence and temporal dimensions. Filtering and plotting functions are incorporated to facilitate the interpretation of tests. We provide examples with different data sources, with default and user‐defined parameters. Compared to other available tools and workflows, occTest offers a comprehensive suite of integrated tests, and allows multiple methods associated with each test to explore consensus among data cleaning methods. It uniquely incorporates both coordinate accuracy analysis and environmental analysis of occurrence records. Furthermore, it provides a hierarchical structure to incorporate future tests yet to be developed.Main conclusionsoccTest will help users understand the quality and quantity of data available before the start of data analysis, while also enabling users to filter data using either predefined rules or custom‐built rules. As a result, occTest can better assess each record's appropriateness for its intended application.

Louw, G. J., L. J. Potgieter, and D. M. Richardson. 2024. Myoporum (Scrophulariaceae): Introduction, naturalization, and invasion of an enigmatic tree genus in South Africa. South African Journal of Botany 168: 529–541. https://doi.org/10.1016/j.sajb.2024.03.022

Myoporum is a genus of trees and shrubs native to the Northern Hemisphere that has been introduced to many parts of the world, mainly for ornamental purposes. We assessed the introduction history, distribution, and extent of naturalization/invasion for Myoporum species in South Africa.Information was collated to determine key events associated with the introduction, establishment, and naturalization of Myoporum in South Africa. Data were collated to determine the current distribution of the genus in South Africa. Twenty sites in the Western Cape were sampled to determine correlates of naturalization. Myoporum was first recorded in South Africa in 1934. Three species were confirmed to be present in South Africa: M. insulare, M. laetum and M. montanum (37 %, 25 % and 24 % of all iNaturalist records respectively). Most records are from the Western Cape (91 %) and small parts of the Eastern Cape; isolated populations occur in Gauteng and the Northern Cape. We could not confirm the presence M. petiolatum, M. tenuifolium or M. tetrandrum. Field surveys revealed widespread naturalization of M. insulare (46 % of all Research Grade observations in iNaturalist); this species was categorized code D1 in the introduction-naturalization-invasion continuum. Myoporum laetum (C3) and M. montanum (C2) are also widely naturalized but over smaller areas. Naturalized populations comprised predominantly juvenile M. insulare plants occurring in highly disturbed (transformed) habitats. Formal risk analyses for all Myoporum species in South Africa are needed as the basis for re-evaluation of their status in national legislation.

Ramírez-Barahona, S. 2024. Incorporating fossils into the joint inference of phylogeny and biogeography of the tree fern order Cyatheales R. Warnock, and M. Zelditch [eds.],. Evolution. https://doi.org/10.1093/evolut/qpae034

Present-day geographic and phylogenetic patterns often reflect the geological and climatic history of the planet. Neontological distribution data are often sufficient to unravel a lineage’s biogeographic history, yet ancestral range inferences can be at odds with fossil evidence. Here, I use the fossilized birth–death process and the dispersal–extinction cladogenesis model to jointly infer the dated phylogeny and range evolution of the tree fern order Cyatheales. I use data for 101 fossil and 442 extant tree ferns to reconstruct the biogeographic history of the group over the last 220 million years. Fossil-aware reconstructions evince a prolonged occupancy of Laurasia over the Triassic–Cretaceous by Cyathealean tree ferns, which is evident in the fossil record but hidden from analyses relying on neontological data alone. Nonetheless, fossil-aware reconstructions are affected by uncertainty in fossils’ phylogenetic placement, taphonomic biases, and specimen sampling and are sensitive to interpretation of paleodistributions and how these are scored. The present results highlight the need and challenges of incorporating fossils into joint inferences of phylogeny and biogeography to improve the reliability of ancestral geographic range estimation.

Anest, A., Y. Bouchenak-Khelladi, T. Charles-Dominique, F. Forest, Y. Caraglio, G. P. Hempson, O. Maurin, and K. W. Tomlinson. 2024. Blocking then stinging as a case of two-step evolution of defensive cage architectures in herbivore-driven ecosystems. Nature Plants. https://doi.org/10.1038/s41477-024-01649-4

Dense branching and spines are common features of plant species in ecosystems with high mammalian herbivory pressure. While dense branching and spines can inhibit herbivory independently, when combined, they form a powerful defensive cage architecture. However, how cage architecture evolved under mammalian pressure has remained unexplored. Here we show how dense branching and spines emerged during the age of mammalian radiation in the Combretaceae family and diversified in herbivore-driven ecosystems in the tropics. Phylogenetic comparative methods revealed that modern plant architectural strategies defending against large mammals evolved via a stepwise process. First, dense branching emerged under intermediate herbivory pressure, followed by the acquisition of spines that supported higher speciation rates under high herbivory pressure. Our study highlights the adaptive value of dense branching as part of a herbivore defence strategy and identifies large mammal herbivory as a major selective force shaping the whole plant architecture of woody plants. This study explores the evolution of two traits, branching density and spine presence, in the globally distributed plant family Combretaceae. These traits were found to have appeared in a two-step process in response to mammalian herbivory pressure, revealing the importance of large mammals in the evolution of plant architecture diversity.

Zhang, H., W. Guo, and W. Wang. 2023. The dimensionality reductions of environmental variables have a significant effect on the performance of species distribution models. Ecology and Evolution 13. https://doi.org/10.1002/ece3.10747

How to effectively obtain species‐related low‐dimensional data from massive environmental variables has become an urgent problem for species distribution models (SDMs). In this study, we will explore whether dimensionality reduction on environmental variables can improve the predictive performance of SDMs. We first used two linear (i.e., principal component analysis (PCA) and independent components analysis) and two nonlinear (i.e., kernel principal component analysis (KPCA) and uniform manifold approximation and projection) dimensionality reduction techniques (DRTs) to reduce the dimensionality of high‐dimensional environmental data. Then, we established five SDMs based on the environmental variables of dimensionality reduction for 23 real plant species and nine virtual species, and compared the predictive performance of those with the SDMs based on the selected environmental variables through Pearson's correlation coefficient (PCC). In addition, we studied the effects of DRTs, model complexity, and sample size on the predictive performance of SDMs. The predictive performance of SDMs under DRTs other than KPCA is better than using PCC. And the predictive performance of SDMs using linear DRTs is better than using nonlinear DRTs. In addition, using DRTs to deal with environmental variables has no less impact on the predictive performance of SDMs than model complexity and sample size. When the model complexity is at the complex level, PCA can improve the predictive performance of SDMs the most by 2.55% compared with PCC. At the middle level of sample size, the PCA improved the predictive performance of SDMs by 2.68% compared with the PCC. Our study demonstrates that DRTs have a significant effect on the predictive performance of SDMs. Specifically, linear DRTs, especially PCA, are more effective at improving model predictive performance under relatively complex model complexity or large sample sizes.

Mbobo, T., D. Richardson, and J. Wilson. 2023. Syzygium australe (J.C.Wendl. ex Link) B. Hyland (Myrtaceae) in South Africa: current distribution and invasion potential. BioInvasions Records 12: 637–648. https://doi.org/10.3391/bir.2023.12.3.01

Syzygium australe (Australian brush-cherry; the names Eugenia australis and Syzygium paniculatum have been misapplied to this species in some regions) is native to Australia. It has been introduced and used as an ornamental plant in several regions outside its native range and is invasive in Hawaii and New Zealand. The species was first recorded in South Africa in 1968 and has become a popular and widely traded and planted ornamental species. The first reports of naturalisation in the country appeared in the first decade of the 21st century; the species was subsequently flagged as a priority for investigation and potential regulation as an invasive species. In this paper we mapped the current distribution of S. australe in South Africa, determined its introduction status, and modelled its potential distribution. We also investigated whether cultivated plants are producing fertile seeds and compared such seeds with those produced by plants growing outside cultivation. We recorded S. australe at 268 sites across the country, clustered primarily in the Western Cape province. Naturalised populations have established at three sites, all in the Western Cape. Surveys of these established populations revealed ~ 4000 plants covering an area of ~ 7 ha (representing ~ 2 ha condensed canopy area). These populations were flourishing in riparian habitats in urban areas. Species distribution models suggest that S. australe has the potential to expand its current range in South Africa, primarily in coastal regions. Seeds of both cultivated and naturalised plants showed similar high levels of germinability (both 100%). Building on these findings, we conducted a risk analysis using the Risk Analysis of Alien Taxa Framework, and found S. australe to be of high invasion risk in South Africa. We recommend that all populations outside cultivation be controlled, and that propagation and trade be prohibited. However, except where they occur near riparian habitats, garden plantings do not need to be prioritised for immediate control, and can rather be phased out over time.

ter Huurne, M. B., L. J. Potgieter, C. Botella, and D. M. Richardson. 2023. Melaleuca (Myrtaceae): Biogeography of an important genus of trees and shrubs in a changing world. South African Journal of Botany 162: 230–244. https://doi.org/10.1016/j.sajb.2023.08.052

The number of naturalised and invasive woody plant species has increased rapidly in recent decades. Despite the increasing interest in tree and shrub invasions, little is known about the invasion ecology of most species. This paper explores the global movement of species in the genus Melaleuca (Myrtaceae; here including the genus Callistemon). We assess the global introduction history, distribution and biogeographic status of the genus. Various global species occurrence databases, citizen science (iNaturalist), and the literature were used.Seventy-two species [out of 386 Melaleuca species; 19%] have been introduced to at least 125 regions outside their native range. The main regions of global Melaleuca introductions are Southeast Asia, the southern parts of North America, south-eastern South America, southern Africa and Europe. The earliest record of a Melaleuca species outside of the native range of the genus is 1789. First records of Melaleuca species outside their native range were most commonly recorded in the 1960s, with records from all over the world. The main reasons for Melaleuca introductions were for use in the tea tree (pharmaceutical value) and ornamental horticulture industries. Melaleuca introductions, naturalizations and invasions are recent compared to many other woody plant taxa. Experiences in Florida and South Africa highlight the potential of Melaleuca species to spread rapidly and have significant ecological impacts. It is likely that the accumulating invasion debt will result in further naturalization and invasion of Melaleuca species in the future.

Rodríguez-Merino, A. 2023. Identifying and Managing Areas under Threat in the Iberian Peninsula: An Invasion Risk Atlas for Non-Native Aquatic Plant Species as a Potential Tool. Plants 12: 3069. https://doi.org/10.3390/plants12173069

Predicting the likelihood that non-native species will be introduced into new areas remains one of conservation’s greatest challenges and, consequently, it is necessary to adopt adequate management measures to mitigate the effects of future biological invasions. At present, not much information is available on the areas in which non-native aquatic plant species could establish themselves in the Iberian Peninsula. Species distribution models were used to predict the potential invasion risk of (1) non-native aquatic plant species already established in the peninsula (32 species) and (2) those with the potential to invade the peninsula (40 species). The results revealed that the Iberian Peninsula contains a number of areas capable of hosting non-native aquatic plant species. Areas under anthropogenic pressure are at the greatest risk of invasion, and the variable most related to invasion risk is temperature. The results of this work were used to create the Invasion Risk Atlas for Alien Aquatic Plants in the Iberian Peninsula, a novel online resource that provides information about the potential distribution of non-native aquatic plant species. The atlas and this article are intended to serve as reference tools for the development of public policies, management regimes, and control strategies aimed at the prevention, mitigation, and eradication of non-native aquatic plant species.

Geier, C., J. M. Bouchal, S. Ulrich, D. Uhl, T. Wappler, S. Wedmann, R. Zetter, et al. 2023. Potential pollinators and paleoecological aspects of Eocene Ludwigia (Onagraceae) from Eckfeld, Germany. Palaeoworld. https://doi.org/10.1016/j.palwor.2023.07.003

Paleogene flower-insect interactions and paleo-pollination processes are, in general, poorly understood and fossil evidence for such floral and faunal interactions are rarely reported. To shed light on angiosperm flower-insect interactions, we investigated several hundred fossil flowers and insects from the middle Eocene Fossil Lagerstätte of Eckfeld, Germany. During our work, we discovered a unique fossil Ludwigia flower (bud) with in situ pollen. The ecological preferences (climate, biome, habitat, etc.) of extant Ludwigia and the paleoecological configurations of the fossil plant assemblage support the taxonomic affiliation of the flower bud and an Eocene presence of Ludwigia in the vicinity of the former Lake Eckfeld. Today’s Ludwigia are mostly pollinated by Hymenoptera (bees). Therefore, we screened all currently known hymenopteran fossils from Eckfeld but found no Ludwigia pollen adhering to any of the specimens. On the contrary, we discovered Ludwigia pollen adhering to two different groups of Coleoptera (beetles). Our study suggests that during the Eocene of Europe, Ludwigia flowers were visited and probably pollinated by beetles and over time there was a shift in primary flower visitors/pollinators, from beetles to bees, sometime during the late Paleogene to Neogene.