Science Enabled by Specimen Data

Marcussen, T., H. E. Ballard, J. Danihelka, A. R. Flores, M. V. Nicola, and J. M. Watson. 2022. A Revised Phylogenetic Classification for Viola (Violaceae). Plants 11: 2224. https://doi.org/10.3390/plants11172224

The genus Viola (Violaceae) is among the 40–50 largest genera among angiosperms, yet its taxonomy has not been revised for nearly a century. In the most recent revision, by Wilhelm Becker in 1925, the then-known 400 species were distributed among 14 sections and numerous unranked groups. Here, we provide an updated, comprehensive classification of the genus, based on data from phylogeny, morphology, chromosome counts, and ploidy, and based on modern principles of monophyly. The revision is presented as an annotated global checklist of accepted species of Viola, an updated multigene phylogenetic network and an ITS phylogeny with denser taxon sampling, a brief summary of the taxonomic changes from Becker’s classification and their justification, a morphological binary key to the accepted subgenera, sections and subsections, and an account of each infrageneric subdivision with justifications for delimitation and rank including a description, a list of apomorphies, molecular phylogenies where possible or relevant, a distribution map, and a list of included species. We distribute the 664 species accepted by us into 2 subgenera, 31 sections, and 20 subsections. We erect one new subgenus of Viola (subg. Neoandinium, a replacement name for the illegitimate subg. Andinium), six new sections (sect. Abyssinium, sect. Himalayum, sect. Melvio, sect. Nematocaulon, sect. Spathulidium, sect. Xanthidium), and seven new subsections (subsect. Australasiaticae, subsect. Bulbosae, subsect. Clausenianae, subsect. Cleistogamae, subsect. Dispares, subsect. Formosanae, subsect. Pseudorupestres). Evolution within the genus is discussed in light of biogeography, the fossil record, morphology, and particular traits. Viola is among very few temperate and widespread genera that originated in South America. The biggest identified knowledge gaps for Viola concern the South American taxa, for which basic knowledge from phylogeny, chromosome counts, and fossil data is virtually absent. Viola has also never been subject to comprehensive anatomical study. Studies into seed anatomy and morphology are required to understand the fossil record of the genus.

Lu, L.-L., B.-H. Jiao, F. Qin, G. Xie, K.-Q. Lu, J.-F. Li, B. Sun, et al. 2022. Artemisia pollen dataset for exploring the potential ecological indicators in deep time. Earth System Science Data 14: 3961–3995. https://doi.org/10.5194/essd-14-3961-2022

Abstract. Artemisia, along with Chenopodiaceae, is the dominant component growing in the desert and dry grassland of the Northern Hemisphere. Artemisia pollen with its high productivity, wide distribution, and easy identification is usually regarded as an eco-indicator for assessing aridity and distinguishing grassland from desert vegetation in terms of the pollen relative abundance ratio of Chenopodiaceae/Artemisia (C/A). Nevertheless, divergent opinions on the degree of aridity evaluated by Artemisia pollen have been circulating in the palynological community for a long time. To solve the confusion, we first selected 36 species from nine clades and three outgroups of Artemisia based on the phylogenetic framework, which attempts to cover the maximum range of pollen morphological variation. Then, sampling, experiments, photography, and measurements were taken using standard methods. Here, we present pollen datasets containing 4018 original pollen photographs, 9360 pollen morphological trait measurements, information on 30 858 source plant occurrences, and corresponding environmental factors. Hierarchical cluster analysis on pollen morphological traits was carried out to subdivide Artemisia pollen into three types. When plotting the three pollen types of Artemisia onto the global terrestrial biomes, different pollen types of Artemisia were found to have different habitat ranges. These findings change the traditional concept of Artemisia being restricted to arid and semi-arid environments. The data framework that we designed is open and expandable for new pollen data of Artemisia worldwide. In the future, linking pollen morphology with habitat via these pollen datasets will create additional knowledge that will increase the resolution of the ecological environment in the geological past. The Artemisia pollen datasets are freely available at Zenodo (https://doi.org/10.5281/zenodo.6900308; Lu et al., 2022).

Tytar, V., O. Nekrasova, O. Marushchak, M. Pupins, A. Skute, A. Čeirāns, and I. Kozynenko. 2022. The Spread of the Invasive Locust Digitate Leafminer Parectopa robiniella Clemens, 1863 (Lepidoptera: Gracillariidae) in Europe, with Special Reference to Ukraine. Diversity 14: 605. https://doi.org/10.3390/d14080605

The spread and outbreaks of phytophagous pests are often associated with global warming. In addition to economic interest, these species may be of interest in terms of biological indication of climate changes. In this context, we considered the locust digitate leafminer Parectopa robiniella Clemens, 1863 (Lepidoptera: Gracillariidae). This phytophage was first discovered in Europe in 1970 near Milano in Italy. Since then, it has been spreading across the continent. In Ukraine, it was recorded for the first time in 2003. In 2020–2021, we found areas of massive leaf damage caused by the black locust (Robinia pseudoacacia) in locations on Trukhaniv Island in Kyiv and some places in the Kyiv administrative region. Using 1041 georeferenced records of P. robiniella across Europe and a Bayesian additive regression trees algorithm (BART), we modeled the distribution of the moth. Predictors of current climate (WorldClim v.2, CliMond v.1.2 and ENVIREM) and a black locust habitat suitability raster were employed. Sets of SDMs built for P. robiniella with and without the habitat suitability raster for the host tree performed equally well. Amongst the factors that determine the niche of the locust digitate leafminer, most important are temperature-related conditions assumed to facilitate the spread and naturalization of the pest. In Ukraine, the appearance of the moth has coincided with increasing mean annual temperatures. Particularly favorable for the species are areas in the west and south-west of the country, and Transcarpathia. In the near future, the moth could reach locations in Nordic countries, Estonia, the British Isles, Black Sea coastal areas in Turkey, further into Russia, etc.

Sanczuk, P., E. De Lombaerde, S. Haesen, K. Van Meerbeek, M. Luoto, B. Van der Veken, E. Van Beek, et al. 2022. Competition mediates understorey species range shifts under climate change. Journal of Ecology 110: 1813–1825. https://doi.org/10.1111/1365-2745.13907

Biological communities are reshuffling owing to species range shifts in response to climate change. This process inherently leads to novel assemblages of interacting species. Yet, how climatic change and local dynamics in biotic interactions jointly affect range shifts is still poorly understood.We combine a unique long‐term transplant competition‐exclusion experiment with species distribution models (SDMs) to test the effects of biotic interactions on understorey species range shifts under climate change in European temperate forests. Using a time‐series of 18 years of individual‐level demographic data of four common understorey plant species transplanted beyond their cold range edge to plots with and without interspecific competition, we built integral projection models (IPMs) and analysed the effects of competition on five key vital rates and population growth. We assessed the results of the transplant experiment in the context of the modelled species’ current and future potential distributions.We find that species’ population performances in the transplant experiment decreased with lower predicted habitat suitability from the SDMs. The population performance at the transplant sites was mediated by biotic interactions with the local plant community: for two species with intermediate levels of predicted habitat suitability at the transplant sites, competition effects could explicitly differentiate between net population growth (λ > 1) or shrinkage (λ < 1).Synthesis: Our findings contest the long‐standing idea that at cold range edges, mainly abiotic factors structure species’ distributions. We conclude that biotic interactions, through acting on local population dynamics, may impact species distributions at the continental scale. Hence, predicting climate‐change impacts on biodiversity redistributions ultimately requires us to also integrate dynamics in biotic interactions.

Bywater‐Reyes, S., R. M. Diehl, A. C. Wilcox, J. C. Stella, and L. Kui. 2022. A Green New Balance: Interactions among riparian vegetation plant traits and morphodynamics in alluvial rivers. Earth Surface Processes and Landforms 47: 2410–2436. https://doi.org/10.1002/esp.5385

The strength of interactions between plants and river processes is mediated by plant traits and fluvial conditions, including above‐ground biomass, stem density and flexibility, channel and bed material properties, and flow and sediment regimes. In many rivers, concurrent changes in 1) the composition of riparian vegetation communities as a result of exotic species invasion and 2) shifts in hydrology have altered physical and ecological conditions in a manner that has been mediated by feedbacks between vegetation and morphodynamic processes. We review how Tamarix, which has invaded many U.S. Southwest waterways, and Populus species, woody pioneer trees that are native to the region, differentially affect hydraulics, sediment transport, and river morphology. We draw on flume, field, and modeling approaches spanning the individual seedling to river‐corridor scales. In a flume study, we found differences in the crown morphology, stem density, and flexibility of Tamarix compared to Populus influenced near‐bed flow velocities in a manner that favored aggradation associated with Tamarix. Similarly, at the patch and corridor scales, observations confirmed increased aggradation with increased vegetation density. Furthermore, long‐term channel adjustments were different for Tamarix‐ versus Populus‐dominated reaches, with faster and greater geomorphic adjustments for Tamarix. Collectively, our studies show how plant‐trait differences between Tamarix and Populus, from individual seedlings to larger spatial and temporal scales, influence the co‐adjustment of rivers and riparian plant communities. These findings provide a basis for predicting changes in alluvial riverine systems which we conceptualize as a Green New Balance model that considers how channels may adjust to changes in plant traits and community structure in additional to alterations in flow and sediment supply. We offer suggestions regarding how the Green New Balance can be used in management and invasive species management.

Sarker, U., Y.-P. Lin, S. Oba, Y. Yoshioka, and K. Hoshikawa. 2022. Prospects and potentials of underutilized leafy Amaranths as vegetable use for health-promotion. Plant Physiology and Biochemistry 182: 104–123. https://doi.org/10.1016/j.plaphy.2022.04.011

Climate change causes environmental variation worldwide, which is one of the most serious threats to global food security. In addition, more than 2 billion people in the world are reported to suffer from serious malnutrition, referred to as ‘hidden hunger.’ Dependence on only a few crops could lead to the loss of genetic diversity and high fragility of crop breeding in systems adapting to global scale climate change. The exploitation of underutilized species and genetic resources, referred to as orphan crops, could be a useful approach for resolving the issue of adaptability to environmental alteration, biodiversity preservation, and improvement of nutrient quality and quantity to ensure food security. Moreover, the use of these alternative crops will help to increase the human health benefits and the income of farmers in developing countries. In this review, we highlight the potential of orphan crops, especially amaranths, for use as vegetables and health-promoting nutritional components. This review highlights promising diversified sources of amaranth germplasms, their tolerance to abiotic stresses, and their nutritional, phytochemical, and antioxidant values for vegetable purposes. Betalains (betacyanins and betaxanthins), unique antioxidant components in amaranth vegetables, are also highlighted regarding their chemodiversity across amaranth germplasms and their stability and degradation. In addition, we discuss the physiological functions, antioxidant, antilipidemic, anticancer, and antimicrobial activities, as well as the biosynthesis pathway, molecular, biochemical, genetics, and genomic mechanisms of betalains in detail.

Charitonidou, M., K. Kougioumoutzis, M. C. Karypidou, and J. M. Halley. 2022. ‘Fly to a Safer North’: Distributional Shifts of the Orchid Ophrys insectifera L. Due to Climate Change. Biology 11: 497. https://doi.org/10.3390/biology11040497

Numerous orchid species around the world have already been affected by the ongoing climate change, displaying phenological alterations and considerable changes to their distributions. The fly orchid (Ophrys insectifera L.) is a well-known and distinctive Ophrys species in Europe, with a broad distribution across the continent. This study explores the effects of climate change on the range of O. insectifera, using a species distribution models (SDMs) framework that encompasses different climatic models and scenarios for the near- and long-term future. The species’ environmentally suitable area is projected to shift northwards (as expected) but downhill (contrary to usual expectations) in the future. In addition, an overall range contraction is predicted under all investigated combinations of climatic models and scenarios. While this is moderate overall, it includes some regions of severe loss and other areas with major gains. Specifically, O. insectifera is projected to experience major area loss in its southern reaches (the Balkans, Italy and Spain), while it will expand its northern limits to North Europe, with the UK, Scandinavia, and the Baltic countries exhibiting the largest gains.View Full-Text

Afonin, A. N., O. G. Baranova, Y. A. Fedorova, L. M. Abramova, T. F. Boshko, N. V. Kotsareva, Yu. S. Li, et al. 2022. ECOLOGICAL AND GEOGRAPHICAL POTENTIAL OF &lt;i&gt;AMBROSIA ARTEMISIIFOLIA&lt;/i&gt; L. DISTRIBUTION TO THE NORTH OF THE EUROPEAN RUSSIA BASED ON A COMPARISON OF THE NORTHERN BOUNDARIES OF THE PRIMARY AND SECONDARY RANGES. Russian Journal of Biological Invasions 15: 2–12. https://doi.org/10.35885/1996-1499-15-1-2-12

В ходе экспедиционных исследований уточнена современная фактическая граница натурализации Аmbrosia artemisiifolia на Европейской территории России. Эта граница проходит по югу Брянской, Курской и Саратовской, северу Воронежской областей. Общая протяжённость экспедиционных маршрутов составила около 8900 км, количество обследованных точек – 777. В целях выявления потенциала дальнейшего продвижения вида на север проведён сравнительный эколого-географический анализ и моделирование распространения амброзии на севере её вторичного ареала на Европейской территории России и первичного – в Канаде. Выявлено, что основным фактором, лимитирующим продвижение вида на север, служит недостаточная теплообеспеченность периода созревания семян. Для определения эколого-географической ниши амброзии была составлена глобальная карта распределения сумм активных температур с порогом выше 10 °С за период от даты перехода длины дня через 14 часов после летнего солнцестояния до устойчивого перехода осенних температур через 0 °С (САТфп). Было определено значение САТфп на самых северных точках натурализации Аmbrosia artemisiifolia на Европейской территории России и в Канаде. Сравнение эколого-географических границ по фактору теплообеспеченности на Европейской территории России и в Канаде показало, что реализованная видом эколого-географическая ниша на Североамериканском континенте в настоящее время в целом шире, чем на Европейской территории России. Рассмотрены возможные причины, по которым амброзия не освоила всю потенциальную экологическую нишу на Европейской территории России, сделаны предположения о возможности дальнейшего продвижения вида на север. Амброзия по фактору теплообеспеченности на Европейской территории России может продвинуться дальше на север – в Брянскую, Орловскую, Липецкую, Тамбовскую, Саратовскую, Оренбургскую, южную половину Пензенской, юг Ульяновской, Самарской областей и Башкортостана. Дополнительные проблемы с продвижением вида в северо-восточном направлении на Европейской территории России могут быть обусловлены сопряжённым неблагоприятным воздействием дополнительного фактора – недостаточной влагообеспеченности, поскольку от Саратовской области и восточнее амброзия на северном пределе распространения находится в зоне экологического пессимума одновременно по показателям тепло- и влагообеспеченности.

Yousefi, M., A. Mahmoudi, A. Kafash, A. Khani, and B. Kryštufek. 2022. Biogeography of rodents in Iran: species richness, elevational distribution and their environmental correlates. Mammalia 86: 309–320. https://doi.org/10.1515/mammalia-2021-0104

Abstract Rodent biogeographic studies are disproportionately scarce in Iran, however, they are an ideal system to understand drivers of biodiversity distributions in the country. The aims of the present research are to determine (i) the pattern of rodent richness across the country, (ii) quantify th…

KHRAPOV, D., N. KOVAL, and N. YUNAKOV. 2022. Prediction of the distribution limits of Rhinomias forticornis (Boheman, 1842) (Coleoptera: Curculionidae: Entiminae) based on Remote Sensing. Journal of Insect Biodiversity 31. https://doi.org/10.12976/jib/2022.31.1.3

Morphometry and diagnosis of Rhinomias forticornis (Boheman, 1842) are given. Distribution of Rhinomias forticornis is analyzed using known occurrences, original ecological data, correlative species distribution modeling with aspect on Last Glacial Maximum environment are given. To achieve a more re…