Science Enabled by Specimen Data

Yang, M., Y. Qi, X. Xian, N. Yang, L. Xue, C. Zhang, H. Bao, and W. Liu. 2025. Coupling phylogenetic relatedness and distribution patterns provides insights into sandburs invasion risk assessment. Science of The Total Environment 958: 177819. https://doi.org/10.1016/j.scitotenv.2024.177819

Invasive sandburs (Cenchrus spp.), tropical and subtropical plants, are preferred in grasslands and agricultural ecosystems worldwide, causing significant crop production losses and reducing native biodiversity. Integrating phylogenetic relatedness and potentially suitable habitats (PSHs) to identify areas at risk of invasion is critical for prioritizing management efforts and supporting decisions on early warning and surveillance for sandbur invasions. However, despite risk assessments for individual Cenchrus species, the combined analysis of suitable habitats and phylogenetic relationships remains unclear. Therefore, this study aims to assess the invasion risk regions—including PSHs, species richness (SR), and phylogenetic structure—of eight invasive and potentially invasive sandburs in China, to quantify their niche overlap and identify driving factors. Our results showed that the phylogenetic distance of potentially invasive sandburs was closely related to invasive sandburs. Especially, three potentially invasive sandburs, C. ciliaris, C. setigerus, and C. myosuroides, possessed invasion potential resulting from close phylogenetic relatedness and high climatic suitability compared with invasive sandburs. The PSHs for invasive sandburs were distributed in wider regions except northwest China and had higher suitability to different environmental conditions. Potentially invasive sandburs were primarily located in southwestern and southern China driven by precipitation, especially, being inspected in Guangdong, Hainan, and Yunnan on numerous occasions, or potentially introduced in Guangxi, Taiwan, and Fujian for sandburs invasion hotspots. The phylogenetic clustering for eight sandburs occurred in the eastern, center, and southern coastal China, where higher SR in distribution was correlated with invasion hotspots. The SR and phylogenetic relatedness metrics were related to temperature and topographic variables. Totally, the expansion and invasion risk could be increased toward higher latitudes under future global warming. These findings offer novel insights for the prevention and management of sandburs invasions.

Quirk, Z. J., S. Y. Smith, R. Paul Acosta, and C. J. Poulsen. 2024. Where did they come from, where did they go? Niche conservatism in woody and herbaceous plants and implications for plant‐based paleoclimatic reconstructions. American Journal of Botany 111. https://doi.org/10.1002/ajb2.16426

AbstractPremiseThe ecological conditions that constrain plants to an environmental niche are assumed to be constant through time. While the fossil record has been used previously to test for niche conservatism of woody flowering plants, additional studies are needed in other plant groups especially since they can provide insight with paleoclimatic reconstructions, high biodiversity in modern terrestrial ecosystems, and significant contributions to agriculture.MethodsWe tested climatic niche conservatism across time by characterizing the climatic niches of living herbaceous ginger plants (Zingiberaceae) and woody dawn redwood (Metasequoia) against paleoniches reconstructed based on fossil distribution data and paleoclimatic models.ResultsDespite few fossil Zingiberaceae occurrences in the latitudinal tropics, unlike living Zingiberaceae, extinct Zingiberaceae likely experienced paratropical conditions in the higher latitudes, especially in the Cretaceous and Paleogene. The living and fossil distributions of Metasequoia largely remain in the upper latitudes of the northern hemisphere. The Zingiberaceae shifted from an initial subtropical climatic paleoniche in the Cretaceous, toward a temperate regime in the late Cenozoic; Metasequoia occupied a more consistent climatic niche over the same time intervals.ConclusionsBecause of the inconsistent climatic niches of Zingiberaceae over geologic time, we are less confident of using them for taxonomic‐based paleoclimatic reconstruction methods like nearest living relative, which assume a consistent climatic niche between extant and extinct relatives; we argue that the consistent climatic niche of Metasequoia is more appropriate for these reconstructions. Niche conservatism cannot be assumed between extant and extinct plants and should be tested further in groups used for paleoclimatic reconstructions.

Rincón Barrado, M., M. Perez, T. Villaverde, C. García‐Verdugo, J. Caujapé‐Castells, R. Riina, and I. Sanmartín. 2024. Phylogenomics and phylogeographic model testing using convolutional neural networks reveal a history of recent admixture in the Canarian Kleinia neriifolia. Molecular Ecology 33. https://doi.org/10.1111/mec.17537

Multiple‐island endemics (MIE) are considered ideal natural subjects to study patterns of island colonization that involve recent population‐level genetic processes. Kleinia neriifolia is a Canarian MIE widespread across the archipelago, which exhibits a close phylogenetic relationship with species in northwest Africa and at the other side of the Sahara Desert. Here, we used target sequencing with plastid skimming (Hyb‐Seq), a dense population‐level sampling of K. neriifolia, and representatives of its African–southern Arabian relatives to infer phylogenetic relationships and divergence times at the species and population levels. Using population genetic techniques and machine learning (convolutional neural networks [CNNs]), we reconstructed phylogeographic relationships and patterns of genetic admixture based on a multilocus SNP nuclear dataset. Phylogenomic analysis based on the nuclear dataset identifies the northwestern African Kleinia anteuphorbium as the sister species of K. neriifolia, with divergence starting in the early Pliocene. Divergence from its sister clade, comprising species from the Horn of Africa and southern Arabia, is dated to the arid Messinian period, lending support to the climatic vicariance origin of the Rand Flora. Phylogeographic model testing with CNNs supports an initial colonization of the central island of Tenerife followed by eastward and westward migration across the archipelago, which resulted in the observed east/west phylogeographic split. Subsequent population extinctions linked to aridification events, and recolonization from Tenerife, are proposed to explain the patterns of genetic admixture in the eastern Canary Islands. We demonstrate that CNNs based on SNPs can be used to discriminate among complex scenarios of island migration and colonization.

Lin, P.-C., T.-Y. Chiang, M.-L. Chen, T.-W. Hsu, P.-W. Gean, S.-T. Cheng, and Y.-H. Hsu. 2024. Global prospects for cultivating Centella asiatica: An ecological niche modeling approach under current and future climatic scenarios. Journal of Agriculture and Food Research 18: 101380. https://doi.org/10.1016/j.jafr.2024.101380

Centella asiatica is a medicinal plant recognized for its various benefits contributed by its metabolites and has been used as a food supplement since prehistorical times across various cultures. Due to the reliance on natural populations of C. asiatica and the impacts of environmental factors on its yield and centelloside production, there is a need to identify suitable cultivation areas for this species. We employed ecological niche modelling with bioclimatic and soil variables to evaluate the suitability of cultivation under current and future climatic scenarios. Our results identified suitable areas for cultivating C. asiatica worldwide, indicating its potential for global commercial cultivation. However, the niche reconstruction of highly concentrated centelloside was restricted to South and Southeast Asia due to the lack of available data. When we projected the modelled niche of centelloside in these regions, we observed a lower occurrence probability in some areas, suggesting potential challenges in cost-effectiveness. Nevertheless, our results suggest a consistent future distribution for this species when we projected the modelled niche under future climates based on various socio-economic scenarios. This study not only identifies suitable areas to develop commercial cultivation for C. asiatica with highly concentrated centelloside, but also provides supporting evidence of the consistency of these areas, which can increase its sustainability.

Saunders, T. C., I. Larridon, W. J. Baker, R. L. Barrett, F. Forest, E. Françoso, O. Maurin, et al. 2024. Tangled webs and spider‐flowers: Phylogenomics, biogeography, and seed morphology inform the evolutionary history of Cleomaceae. American Journal of Botany 111. https://doi.org/10.1002/ajb2.16399

Premise Cleomaceae is an important model clade for studies of evolutionary processes including genome evolution, floral form diversification, and photosynthetic pathway evolution. Diversification and divergence patterns in Cleomaceae remain tangled as research has been restricted by its worldwide distribution, limited genetic sampling and species coverage, and a lack of definitive fossil calibration points.MethodsWe used target sequence capture and the Angiosperms353 probe set to perform a phylogenetic study of Cleomaceae. We estimated divergence times and biogeographic analyses to explore the origin and diversification of the family. Seed morphology across extant taxa was documented with multifocal image‐stacking techniques and morphological characters were extracted, analyzed, and compared to fossil records.ResultsWe recovered a well‐supported and resolved phylogenetic tree of Cleomaceae generic relationships that includes 236 (~86%) species. We identified 11 principal clades and confidently placed Cleomella as sister to the rest of the family. Our analyses suggested that Cleomaceae and Brassicaceae diverged ~56 mya, and Cleomaceae began to diversify ~53 mya in the Palearctic and Africa. Multiple transatlantic disjunct distributions were identified. Seeds were imaged from 218 (~80%) species in the family and compared to all known fossil species.ConclusionsOur results represent the most comprehensive phylogenetic study of Cleomaceae to date. We identified transatlantic disjunctions and proposed explanations for these patterns, most likely either long‐distance dispersals or contractions in latitudinal distributions caused by climate change over geological timescales. We found that seed morphology varied considerably but mostly mirrored generic relationships.

Mu, J., Z. Li, Q. Lu, H. Yu, C. Hu, Y. Mu, and J. Qu. 2024. Overlooked drivers of the greenhouse effect: The nutrient-methane nexus mediated by submerged macrophytes. Water Research 266: 122316. https://doi.org/10.1016/j.watres.2024.122316

Submerged macrophytes remediation is a commonly used technique for improving water quality and restoring habitat in aquatic ecosystems. However, the drivers of success in the submerged macrophytes assembly process and their specific impacts on methane emissions are poorly understood. Thus, we conducted a mesocosm experiment to test the growth plasticity and carbon fixation of widespread submerged macrophytes (Vallisneria natans) under different nutrient conditions. A refined dynamic chamber method was utilized to concurrently collect and quantify methane emission fluxes arising from ebullition and diffusion processes. Significant correlations were found between methane flux and variations in the physiological activities of V. nantas by the fluorescence imaging system. Our results show that exceeding tolerance thresholds of ammonia in the water significantly interfered with the photosynthetic systems in submerged leaves and the radial oxygen loss in adventitious roots. The recovery process of V. natans accelerated the consumption of dissolved oxygen, leading to increase in the populations of methanogen (153.3 % increase of mcrA genes) and subsequently elevating CH4 emission fluxes (23.7 %) under high nutrient concentrations. Conversely, V. natans increased the available organic carbon under low nutrient conditions by radial oxygen loss, further increasing CH4 emission fluxes (94.7 %). Quantitative genetic and modeling analyses revealed that plant restoration processes drive ecological niche differentiation of methanogenic and methane oxidation microorganisms, affecting methane release fluxes within the restored area. The speciation process of V. natans is incapable of simultaneously meeting improved water purification and reduced methane emissions goals.

Poudel, Y. B., K. Panthi, B. Adhikari, and S. Rajbhandary. 2024. Lindernia rotundifolia (Linderniaceae), Picria fel-terrae (Linderniaceae), and Limnophila aromatica (Plantaginaceae): three new records for the flora of Nepal. Check List 20: 819–827. https://doi.org/10.15560/20.3.819

Lindernia rotundifolia (L.) Alston (Linderniaceae), Picria fel-terrae Lour. (Linderniaceae), and Limnophila aromatica (Lam.) Merr. (Plantaginaceae) are newly reported from Jalthal forest, eastern Nepal. Picria Lour. is a new generic record for Nepal. Descriptions of all the species based on Nepalese specimens are provided, along with notes on diagnostic features, color photographs of the species, distribution maps, and notes on habitats.

Goicolea, T., A. Adde, O. Broennimann, J. I. García‐Viñas, A. Gastón, M. José Aroca‐Fernández, A. Guisan, and R. G. Mateo. 2024. Spatially‐nested hierarchical species distribution models to overcome niche truncation in national‐scale studies. Ecography. https://doi.org/10.1111/ecog.07328

Spatial truncation in species distribution models (SDMs) might cause niche truncation and model transferability issues, particularly when extrapolating models to non‐analog environmental conditions. While broad calibration extents reduce truncation issues, they usually overlook local ecological factors driving species distributions at finer resolution. Spatially‐nested hierarchical SDMs (HSDMs) address truncation by merging (a) a global model calibrated with broadly extended, yet typically low‐resolution, basic, and imprecise data; and (b) a regional model calibrated with spatially restricted but more precise and reliable data. This study aimed to examine HSDMs' efficacy to overcome spatial truncation in national‐scale studies. We compared two hierarchical strategies (‘covariate', which uses the global model output as a covariate for the regional model, and ‘multiply', which calculates the geometric mean of the global and regional models) and a non‐hierarchical strategy. The three strategies were compared in terms of niche truncation, environmental extrapolation, model performance, species' predicted distributions and shifts, and trends in species richness. We examined the consistency of the results over two study areas (Spain and Switzerland), 108 tree species, and four future climate scenarios. Only the non‐hierarchical strategy was susceptible to niche truncation, and environmental extrapolation issues. Hierarchical strategies, particularly the ‘covariate' one, presented greater model accuracy than non‐hierarchical strategies. The non‐hierarchical strategy predicted the highest overall values and the lowest decreases over time in species distribution ranges and richness. Differences between strategies were more evident in Switzerland, which was more affected by niche truncation issues. Spain was more negatively affected by climate change and environmental extrapolation. The ‘covariate' strategy exhibited higher model performance than the ‘multiply' one. However, uncertainties regarding model temporal transferability advocate for adopting and further examining multiple hierarchical approaches. This research underscores the importance of adopting spatially‐nested hierarchical SDMs given the compromised reliability of non‐hierarchical approaches due to niche truncation and extrapolation issues.

Bürger, M., and J. Chory. 2024. A potential role of heat‐moisture couplings in the range expansion of Striga asiatica. Ecology and Evolution 14. https://doi.org/10.1002/ece3.11332

Parasitic weeds in the genera Orobanche, Phelipanche (broomrapes) and Striga (witchweeds) have a devastating impact on food security across much of Africa, Asia and the Mediterranean Basin. Yet, how climatic factors might affect the range expansion of these weeds in the context of global environmental change remains unexplored. We examined satellite‐based environmental variables such as surface temperature, root zone soil moisture, and elevation, in relation to parasitic weed distribution and environmental conditions over time, in combination with observational data from the Global Biodiversity Information Facility (GBIF). Our analysis reveals contrasting environmental and altitude preferences in the genera Striga and Orobanche. Asiatic witchweed (Striga asiatica), which infests corn, rice, sorghum, and sugar cane crops, appears to be expanding its range in high elevation habitats. It also shows a significant association with heat‐moisture coupling events, the frequency of which is rising in such environments. These results point to geographical shifts in distribution and abundance in parasitic weeds due to climate change.

M.P., K., S. S.R., M. V.F.O., and S. Nampy. 2024. Revision of Utricularia section Nigrescentes (Lentibulariaceae) in India and re-instating Utricularia roseopurpurea based on morphological-molecular approach. Rheedea 34: 20–39. https://doi.org/10.22244/rheedea.2024.34.01.02

Utricularia L. section Nigrescentes (Oliv.) Komiya (Lentibulariaceae), distributed in tropical Africa, Madagascar, Asia to Japan and Australia includes four species, U. bracteata R.D.Good, U. caerulea L., U. roseopurpurea Stapf ex Gamble and U. warburgii K.I.Goebel. Utricularia caerulea and U. roseopurpurea occur in India, and the latter species has long been treated as a synonym of the former. The identity of U. roseopurpurea has been confirmed using morphological, micromorphological, and molecular data and the species has been re-established. Multiple accessions of the species included in the phylogenetic study formed a sister clade to U. caerulea with strong branch support. The section Nigrescentes in India is revisited, and the distribution of both species is defined based on extensive field and herbarium surveys. The affinities between the two species are discussed. Full descriptions, notes on habitat requirements, nomenclature, assessment of the conservation status and photographs are provided for both species.