Science Enabled by Specimen Data

Colli-Silva, M., J. R. Pirani, and A. Zizka. 2022. Ecological niche models and point distribution data reveal a differential coverage of the cacao relatives (Malvaceae) in South American protected areas. Ecological Informatics 69: 101668.

For many regions, such as in South America, it is unclear how well the existent protected areas network (PAs) covers different taxonomic groups and if there is a coverage bias of PAs towards certain biomes or species. Publicly available occurrence data along with ecological niche models might help to overcome this gap and to quantify the coverage of taxa by PAs ensuring an unbiased distribution of conservation effort. Here, we use an occurrence database of 271 species from the cacao family (Malvaceae) to address how South American PAs cover species with different distribution, abundance, and threat status. Furthermore, we compared the performance of online databases, expert knowledge, and modelled species distributions in estimating species coverage in PAs. We found 79 species from our survey (29% of the total) lack any record inside South American PAs and that 20 out of 23 species potentially threatened with extinction are not covered by PAs. The area covered by South American PAs was low across biomes, except for Amazonia, which had a relative high PA coverage, but little information on species distribution within PA available. Also, raw geo-referenced occurrence data were underestimating the number of species in PAs, and projections from ecological niche models were more prone to overestimating the number of species represented within PAs. We discuss that the protection of South American flora in heterogeneous environments demand for specific strategies tailored to particular biomes, including making new collections inside PAs in less collected areas, and the delimitation of more areas for protection in more known areas. Also, by presenting biasing scenarios of collection effort in a representative plant group, our results can benefit policy makers in conserving different spots of tropical environments highly biodiverse.

Chevalier, M. 2022. <i>crestr</i>: an R package to perform probabilistic climate reconstructions from palaeoecological datasets. Climate of the Past 18: 821–844.

Abstract. Statistical climate reconstruction techniques are fundamental tools to study past climate variability from fossil proxy data. In particular, the methods based on probability density functions (or PDFs) can be used in various environments and with different climate proxies because they rely on elementary calibration data (i.e. modern geolocalised presence data). However, the difficulty of accessing and curating these calibration data and the complexity of interpreting probabilistic results have often limited their use in palaeoclimatological studies. Here, I introduce a new R package (crestr) to apply the PDF-based method CREST (Climate REconstruction SofTware) on diverse palaeoecological datasets and address these problems. crestr includes a globally curated calibration dataset for six common climate proxies (i.e. plants, beetles, chironomids, rodents, foraminifera, and dinoflagellate cysts) associated with an extensive range of climate variables (20 terrestrial and 19 marine variables) that enables its use in most terrestrial and marine environments. Private data collections can also be used instead of, or in combination with, the provided calibration dataset. The package includes a suite of graphical diagnostic tools to represent the data at each step of the reconstruction process and provide insights into the effect of the different modelling assumptions and external factors that underlie a reconstruction. With this R package, the CREST method can now be used in a scriptable environment and thus be more easily integrated with existing workflows. It is hoped that crestr will be used to produce the much-needed quantified climate reconstructions from the many regions where they are currently lacking, despite the availability of suitable fossil records. To support this development, the use of the package is illustrated with a step-by-step replication of a 790 000-year-long mean annual temperature reconstruction based on a pollen record from southeastern Africa.

Sluiter, I. R. K., G. R. Holdgate, T. Reichgelt, D. R. Greenwood, A. P. Kershaw, and N. L. Schultz. 2022. A new perspective on Late Eocene and Oligocene vegetation and paleoclimates of South-eastern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 596: 110985.

We present a composite terrestrial pollen record of latest Eocene through Oligocene (35.5–23 Ma) vegetation and climate change from the Gippsland Basin of south-eastern Australia. Climates were overwhelmingly mesothermic through this time period, with mean annual temperature (MAT) varying between 13 and 18 °C, with an average of 16 °C. We provide evidence to support a cooling trend through the Eocene–Oligocene Transition (EOT), but also identify three subsequent warming cycles through the Oligocene, leading to more seasonal climates at the termination of the Epoch. One of the warming episodes in the Early Oligocene appears to have also occurred at two other southern hemisphere sites at the Drake Passage as well as off eastern Tasmania, based on recent research. Similarities with sea surface temperature records from modern high southern latitudes which also record similar cycles of warming and cooling, are presented and discussed. Annual precipitation varied between 1200 and 1700 mm/yr, with an average of 1470 mm/yr through the sequence. Notwithstanding the extinction of Nothofagus sg. Brassospora from Australia and some now microthermic humid restricted Podocarpaceae conifer taxa, the rainforest vegetation of lowland south-eastern Australia is reconstructed to have been similar to present day Australian Evergreen Notophyll Vine Forests existing under the sub-tropical Köppen-Geiger climate class Cfa (humid subtropical) for most of the sequence. Short periods of cooler climates, such as occurred through the EOT when MAT was ~ 13 °C, may have supported vegetation similar to modern day Evergreen Microphyll Fern Forest. Of potentially greater significance, however, was a warm period in the Early to early Late Oligocene (32–26 Ma) when MAT was 17–18 °C, accompanied by small but important increases in Araucariaceae pollen. At this time, Araucarian Notophyll/Microphyll Vine Forest likely occurred regionally.

Zhang, S., Y. Sun, M. Li, N. Wang, and Q. Xu. 2022. Paleovegetation and paleotemperature in North China during the mid-Holocene based on sedimentological and palynological evidence from Lake Baiyangdian. Palaeogeography, Palaeoclimatology, Palaeoecology 595: 110982.

The North China Plain is climatically sensitive and is also noted as one of the principal regions in East Asia experiencing pronounced climatic warming. We reconstructed the paleoclimate and paleoenvironment of a lake site in North China Plain during the mid-Holocene warm period, in order to provide reference data and a scientific basis for assessing possible futures changes in the ecological environment in the context of ongoing climate change. The reconstruction is based on the chronology, sedimentology and pollen assemblages of two sedimentary sequences from the Lake Baiyangdian area, which are used to determine the regional vegetation composition and paleotemperature of the hinterland of the North China Plain during the mid-Holocene. The results show that the extent and distribution of Lake Baiyangdian varied due to river channel changes, which also affected the sedimentary facies and the patterns of erosion and accumulation. The pollen assemblages from the lacustrine deposits are derived from the entire catchment of Lake Baiyangdian and they reflect regional patterns of climatic and environmental change. During the mid-Holocene (~6000–5000 yr BP), mixed broadleaf-coniferous forest dominated the western mountains and hills, intrazonal grassland developed on the alluvial fans, and lake-swamp-floodplain environments developed in the hinterland of the North China Plain. Statistical analysis of the modern distribution and climate thresholds of Ceratopteris were used to estimate the mean annual temperature (MAT) and mean January temperature (MJaT) of the Lake Baiyangdian area during the mid-Holocene, which were respectively 3.5 °C and 7.7 °C higher than today. Our findings provide reference data and a scientific basis for landscape reconstruction and paleoclimate modelling in North China.

Kinosian, S. P., and P. G. Wolf. 2022. The biology of C. richardii as a tool to understand plant evolution. eLife 11.

The fern Ceratopteris richardii has been studied as a model organism for over 50 years because it is easy to grow and has a short life cycle. In particular, as the first homosporous vascular plant for which genomic resources were developed, C. richardii has been an important system for studying plant evolution. However, we know relatively little about the natural history of C. richardii. In this article, we summarize what is known about this aspect of C. richardii, and discuss how learning more about its natural history could greatly increase our understanding of the evolution of land plants.

Renjana, E., I. P. Astuti, E. Munawaroh, S. Mursidawati, J. R. Witono, Yuzammi, I. A. Fijridiyanto, et al. 2022. Assessing potential habitat suitability of parasitic plant: A case study of Rafflesia arnoldii and its host plants. Global Ecology and Conservation 34: e02063.

Rafflesia are obligate endo-holoparasitic plants with the genus Tetrastigma playing an important role as their host plants. Rafflesia arnoldii is one of Indonesian endemic plants that grows in Sumatra island. This island is also known to have eleven species of Tetrastigma. Three of them are known as…

Dantas, V. L., and J. G. Pausas. 2022. The legacy of the extinct Neotropical megafauna on plants and biomes. Nature Communications 13.

Large mammal herbivores are important drivers of plant evolution and vegetation patterns, but the extent to which plant trait and ecosystem geography currently reflect the historical distribution of extinct megafauna is unknown. We address this question for South and Central America (Neotropical bio…

Freitas, C., F. T. Brum, C. Cássia-Silva, L. Maracahipes, M. B. Carlucci, R. G. Collevatti, and C. D. Bacon. 2021. Incongruent Spatial Distribution of Taxonomic, Phylogenetic, and Functional Diversity in Neotropical Cocosoid Palms. Frontiers in Forests and Global Change 4.

Biodiversity can be quantified by taxonomic, phylogenetic, and functional diversity. Current evidence points to a lack of congruence between the spatial distribution of these facets due to evolutionary and ecological constraints. A lack of congruence is especially evident between phylogenetic and ta…

Vasconcelos, T., J. D. Boyko, and J. M. Beaulieu. 2021. Linking mode of seed dispersal and climatic niche evolution in flowering plants. Journal of Biogeography.

Aim: Due to the sessile nature of flowering plants, movements to new geographical areas occur mainly during seed dispersal. Frugivores tend to be efficient dispersers because animals move within the boundaries of their preferable niches, so seeds are more likely to be transported to environments tha…

Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885.

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…