Science Enabled by Specimen Data

Iannella, M., D’Alessandro, P., De Simone, W., & Biondi, M. (2021). Habitat Specificity, Host Plants and Areas of Endemism for the Genera-Group Blepharida s.l. in the Afrotropical Region (Coleoptera, Chrysomelidae, Galerucinae, Alticini). Insects, 12(4), 299. doi:10.3390/insects12040299 https://doi.org/10.3390/insects12040299

The genus Calotheca Heyden (Chrysomelidae) is mainly distributed in the eastern and southern parts of sub-Saharan Africa, with some extensions northward, while Blepharidina Bechyné occurs in the intertropical zone of Africa, with two subgenera, Blepharidina s. str. and Blepharidina(Afroblepharida) B…

Bogotá‐Ángel, G., Huang, H., Jardine, P. E., Chazot, N., Salamanca, S., Banks, H., … Hoorn, C. (2021). Climate and geological change as drivers of Mauritiinae palm biogeography. Journal of Biogeography. doi:10.1111/jbi.14098 https://doi.org/10.1111/jbi.14098

Aim: Forest composition and distribution are determined by a myriad of factors, including climate. As models of tropical rain forest, palms are often used as indicator taxa, particularly the Mauritiinae. We question, what characterizes the Mauritiinae pollen in the global fossil record? And when did…

ALMEIDA, R. B. P., ANTAR, G. M., FERREIRA, A. W. C., SILVA JUNIOR, W. R. D., DE OLIVEIRA, M. S., & SARAIVA, R. V. C. (2021). <p><strong>Lectotypification and notes on the distribution of the giant herb <em>Phenakospermum guyannense</em> (Rich.) Miq. (Strelitziaceae)</strong></p>. Phytotaxa, 491(3), 239–248. doi:10.11646/phytotaxa.491.3.4 https://doi.org/10.11646/phytotaxa.491.3.4

Phenakospermum guyannense is the only native species of Strelitziaceae in South America and occurs in the Amazon domain in Bolivia, Brazil, Colombia, Ecuador, French Guiana, Guyana, Peru, Suriname and Venezuela. The species presents a negative sampling bias, probably due to the great effort necessar…

Zamora‐Gutiérrez, V., Rivera‐Villanueva, A. N., Martínez Balvanera, S., Castro‐Castro, A., & Aguirre‐Gutiérrez, J. (2021). Vulnerability of bat‐plant pollination interactions due to environmental change. Global Change Biology. doi:10.1111/gcb.15611 https://doi.org/10.1111/gcb.15611

Plant‐pollinator interactions are highly relevant to society as many crops important for humans are animal pollinated. However, changes in climate and land use may put such interacting patterns at risk by disrupting the occurrences between pollinators and the plants they pollinate. Here, we analyse …

Saldaña‐López, A., Vilà, M., Lloret, F., Manuel Herrera, J., & González‐Moreno, P. (2021). Assembly of species’ climatic niches of coastal communities does not shift after invasion. Journal of Vegetation Science, 32(2). doi:10.1111/jvs.12989 https://doi.org/10.1111/jvs.12989

Question: Do invasions by invasive plant species with contrasting trait profiles (Arctotheca calendula, Carpobrotus spp., Conyza bonariensis, and Opuntia dillenii) change the climatic niche of coastal plant communities? Location: Atlantic coastal habitats in Huelva (Spain). Methods: We identifi…

Lima, L. V., Oliveira, U., Almeida, T. E., Bueno, M. L., & Salino, A. (2021). Migration barriers in ferns: the case of the neotropical genus Diplopterygium (Gleicheniaceae). Plant Ecology & Diversity. doi:10.1080/17550874.2021.1890259 https://doi.org/10.1080/17550874.2021.1890259

Background: Despite the broad distribution of several species in Gleicheniaceae in the neotropical region, Diplopterygium is the only genus having a restricted distribution. Species of Gleicheniaceae occupy open (including anthropogenic) habitats and produce large amounts of wind-dispersed propagule…

Dakhil, M. A., El-Keblawy, A., El-Sheikh, M. A., Halmy, M. W. A., Ksiksi, T., & Hassan, W. A. (2021). Global Invasion Risk Assessment of Prosopis juliflora at Biome Level: Does Soil Matter? Biology, 10(3), 203. doi:10.3390/biology10030203 https://doi.org/10.3390/biology10030203

Prosopis juliflora is one of the most problematic invasive trees in tropical and subtropical regions. Understanding driving forces affecting the potential global distribution would help in managing its current and future spread. The role of climate on the global spatial distribution of P. juliflora …

Hambuckers, A., de Harenne, S., Rocha Ledezma, E., Zúñiga Zeballos, L., & François, L. (2021). Predicting the Future Distribution of Ara rubrogenys, an Endemic Endangered Bird Species of the Andes, Taking into Account Trophic Interactions. Diversity, 13(2), 94. doi:10.3390/d13020094 https://doi.org/10.3390/d13020094

Species distribution models (SDMs) are commonly used with climate only to predict animal distribution changes. This approach however neglects the evolution of other components of the niche, like food resource availability. SDMs are also commonly used with plants. This also suffers limitations, notab…

Ellestad, P., Forest, F., Serpe, M., Novak, S. J., & Buerki, S. (2021). Harnessing large-scale biodiversity data to infer the current distribution of Vanilla planifolia (Orchidaceae). Botanical Journal of the Linnean Society. doi:10.1093/botlinnean/boab005 https://doi.org/10.1093/botlinnean/boab005

Although vanilla is one of the most popular flavours in the world, there is still uncertainty concerning the native distribution of the species that produces it, Vanilla planifolia. To circumscribe the native geographical extent of this economically important species more precisely, we propose a new…

Akin-Fajiye, M., & Akomolafe, G. F. (2021). Disturbance is an important predictor of the distribution of Lantana camara and Chromolaena odorata in Africa. Vegetos. doi:10.1007/s42535-020-00179-6 https://doi.org/10.1007/s42535-020-00179-6

Most studies of invasion have used climatic variables without considering the importance of disturbance on the distribution of the species. In this study, MAXENT was used to model how disturbance, in addition to climatic factors, can affect the invasion of two of the most problematic plant invaders …