Science Enabled by Specimen Data
Calleja-Satrustegui, A., A. Echeverría, I. Ariz, J. Peralta de Andrés, and E. M. González. 2024. Unlocking nature’s drought resilience: a focus on the parsimonious root phenotype and specialised root metabolism in wild Medicago populations. Plant and Soil. https://doi.org/10.1007/s11104-024-06943-w
Abstract Background and aims Crop wild relatives, exposed to strong natural selection, exhibit effective tolerance traits against stresses. While an aggressive root proliferation phenotype has long been considered advantageous for a range of stresses, it appears to be counterproductive under drought due to its high metabolic cost. Recently, a parsimonious root phenotype, metabolically more efficient, has been suggested to be better adapted to semiarid environments, although it is not clear that this phenotype is a trait exhibited by crop wild relatives. Methods Firstly, we analysed the root phenotype and carbon metabolism in four Medicago crop wild relatives adapted to a semiarid environment and compared them with the cultivated M. truncatula Jemalong (A17). Secondly, we exposed the cultivated (probably the least adapted genotype to aridity) and the wild (the most common one in arid zones) M. truncatula genotypes to water deficit. The carbon metabolism response in different parts of their roots was analysed. Results A reduced carbon investment per unit of root length was a common trait in the four wild genotypes, indicative of an evolution towards a parsimonious root phenotype. During the water deficit experiment, the wild M. truncatula showed higher tolerance to drought, along with a superior ability of its taproot to partition sucrose and enhanced capacity of its fibrous roots to maintain sugar homeostasis. Conclusion A parsimonious root phenotype and the spatial specialization of root carbon metabolism represent two important drought tolerance traits. This work provides relevant findings to understand the response of Medicago species roots to water deficit.
Nuñez Otaño, N. B., E. V. Pérez-Pincheira, V. Coll Moritan, and M. Llorens. 2024. Maastrichtian palaeoenvironments and palaeoclimate reconstruction in southern South America (Patagonia, Argentina) based on fossil fungi and algae using open data resources. Historical Biology: 1–15. https://doi.org/10.1080/08912963.2024.2408804
The use of non-pollen palynomorphs (NPP), particularly fossil fungi and algae, as palaeobiological proxies for Late Cretaceous palaeoenvironmental and palaeoclimatic reconstructions of warm-to-hot greenhouse conditions, can enhance our understanding of climate change impacts on modern Patagonian environments. This study aimed to reconstruct the Maastrichtian palaeoenvironment and palaeoclimate in the Cañadón Asfalto Basin (CAB, Chubut Province) by testing these NPPs as proxies using the Nearest Living Relative method (NLR). Moreover, using modern ecological requirements from open-source databases, such as GBIF and processing it with an open-source, cross-platform tool like QGIS, linked with Köppen-Geiger shapefiles, provided evidence of climate-driven palaeo-distribution patterns of fungal and algal diversity at CAB. Applying modern ecological requirements and biogeographic distribution data, we reconstructed the palaeoclimate as temperate with evenly distributed precipitation and warm summers, corresponding to the Cfb climate zone in Köppen-Geiger classifications. Additionally, our methodology produced reliable results regarding Cenozoic floras’ physiognomies based on fossil fungi, revealing a transition from sparsely wooded areas with palms and prairies to complex forest ecosystems with palms, deciduous trees, and shrubland. Furthermore, testing Cretaceous algae with the NLR method, for the first time, provided comprehensive insights into past water body characteristics, including trophic state and water quality.
Lima, V. P., R. A. Ferreira de Lima, F. Joner, L. D’Orangeville, N. Raes, I. Siddique, and H. ter Steege. 2023. Integrating climate change into agroforestry conservation: A case study on native plant species in the Brazilian Atlantic Forest. Journal of Applied Ecology. https://doi.org/10.1111/1365-2664.14464
Designing multispecies systems with suitable climatic affinity and identifying species' vulnerability under human‐driven climate change are current challenges to achieve successful adaptation of natural systems. To address this problem, we need to (1) identify groups of species with climatic similarity under climate scenarios and (2) identify areas with high conservation value under predicted climate change.To recognize species with similar climatic niche requirements that can be grouped for mixed cropping in Brazil, we employed ecological niche models (ENMs) and Spearman's ρ for overlap. We also used prioritization algorithms to map areas of high conservation value using two Shared Socioeconomic Pathways (SSP2‐4.5 and SSP5‐8.5) to assess mid‐term (2041–2060) and long‐term (2061–2080) climate change impacts.We identified 15 species groups with finer climatic affinities at different times depicted on hierarchical clustering dendrograms, which can be combined into agroecological agroforestry systems. Furthermore, we highlight the climatically suitable areas for these groups of species, thus providing an outlook of where different species will need to be planted over time to be conserved. In addition, we observed that climate change is predicted to modify the spatial association of these groups under different future climate scenarios, causing a mean negative change in species climatic similarity of 9.5% to 13.7% under SSP2‐4.5 scenario and 9.5% to 10.5% under SSP5‐8.5, for 2041–2060 and 2061–2080, respectively.Synthesis and applications. Our findings provide a framework for agroforestry conservation. The groups of species with finer climatic affinities identified and the climatically suitable areas can be combined into agroecological productive systems, and provide an outlook of where different species may be planted over time. In addition, the conservation priority zones displaying high climate stability for each species individually and all at once can be incorporated into Brazil's conservation plans by policymakers to prioritize specific sites. Lastly, we urge policymakers, conservation organizations and donors to promote interventions involving farmers and local communities, since the species' evaluated have proven to maintain landscapes with productive forest fragments and can be conserved in different Brazilian ecosystems.
Cousins-Westerberg, R., N. Dakin, L. Schat, G. Kadereit, and A. M. Humphreys. 2023. Evolution of cold tolerance in the highly stress-tolerant samphires and relatives (Salicornieae: Amaranthaceae). Botanical Journal of the Linnean Society. https://doi.org/10.1093/botlinnean/boad009
Low temperature constitutes one of the main barriers to plant distributions, confining many clades to their ancestrally tropical biome. However, recent evidence suggests that transitions from tropical to temperate biomes may be more frequent than previously thought. Here, we study the evolution of cold and frost tolerance in the globally distributed and highly stress-tolerant Salicornieae (Salicornioideae, Amaranthaceae s.l.). We first generate a phylogenetic tree comprising almost all known species (85-90%), using newly generated (n = 106) and published nuclear-ribosomal and plastid sequences. Next, we use geographical occurrence data to document in which clades and geographical regions cold-tolerant species occur and reconstruct how cold tolerance evolved. Finally, we test for correlated evolution between frost tolerance and the annual life form. We find that frost tolerance has evolved independently in up to four Northern Hemisphere lineages but that annuals are no more likely to evolve frost tolerance than perennials, indicating the presence of different strategies for adapting to cold environments. Our findings add to mounting evidence for multiple independent out-of-the-tropics transitions among close relatives of flowering plants and raise new questions about the ecological and physiological mechanism(s) of adaptation to low temperatures in Salicornieae.
Medzihorský, V., J. Trombik, R. Mally, M. Turčáni, and A. M. Liebhold. 2023. Insect invasions track a tree invasion: Global distribution of black locust herbivores. Journal of Biogeography. https://doi.org/10.1111/jbi.14625
Aim Many invasive plant species benefit from enemy release resulting from the absence of insect herbivores in their invaded range. However, over time, specialized herbivores may ‘catch up’ with such invasive plants. Black locust is a tree species with a relatively limited native range in North America but has invaded large areas in virtually every temperate continent including North America. We hypothesize that both intra- and intercontinental spread of black locust leads to a parallel, though delayed pattern of intra- and intercontinental spread of insect herbivores. Location Global. Taxon Black locust, Robinia pseudoacacia, and its insect herbivores. Methods We compiled historical records of the occurrence of insect herbivore species associated with R. pseudoacacia from all world regions. Based on this list, we describe taxonomic patterns and investigate associations between environmental features and numbers of non-native specialist herbivores in the portion of North America invaded by R. pseudoacacia. Results A total of 454 herbivorous species are recorded feeding on R. pseudoacacia across the world, with 23 of these being specialized on Robinia. From this group, seven species have successfully expanded their range beyond North America. Within North America, the richness of specialists is explained by a combination of road density, R. pseudoacacia density, distance from the R. pseudoacacia native range, and climate. Main Conclusion Non-native herbivore species have accumulated on invasive R. pseudoacacia in both North America and in other continents. The steady build-up of invasions likely has diminished the enemy release that this invasive tree species has benefited from – a trend that will likely continue in the future. These findings support the hypothesis that invasive plants promote parallel though delayed invasions of specialist insect herbivores.
Clemente, K. J. E., and M. S. Thomsen. 2023. High temperature frequently increases facilitation between aquatic foundation species: a global meta‐analysis of interaction experiments between angiosperms, seaweeds, and bivalves. Journal of Ecology. https://doi.org/10.1111/1365-2745.14101
Many studies have quantified ecological impacts of individual foundation species (FS). However, emerging data suggest that FS often co‐occur, potentially inhibiting or facilitating one another, thereby causing indirect, cascading effects on surrounding communities. Furthermore, global warming is accelerating, but little is known about how interactions between co‐occurring FS vary with temperature.Shallow aquatic sedimentary systems are often dominated by three types of FS: slower‐growing clonal angiosperms, faster‐growing solitary seaweeds, and shell‐forming filter‐ and deposit‐feeding bivalves. Here, we tested the impacts of one FS on another by analyzing manipulative interaction experiments from 148 papers with a global meta‐analysis.We calculated 1,942 (non‐independent) Hedges’ g effect sizes, from 11,652 extracted values over performance responses, such as abundances, growths or survival of FS, and their associated standard deviations and replication levels. Standard aggregation procedures generated 511 independent Hedges’ g that was classified into six types of reciprocal impacts between FS.We found that (i) seaweeds had consistent negative impacts on angiosperms across performance responses, organismal sizes, experimental approaches, and ecosystem types; (ii) angiosperms and bivalves generally had positive impacts on each other (e.g., positive effects of angiosperms on bivalves were consistent across organismal sizes and experimental approaches, but angiosperm effect on bivalve growth and bivalve effect on angiosperm abundance were not significant); (iii) bivalves positively affected seaweeds (particularly on growth responses); (iv) there were generally no net effects of seaweeds on bivalves (except for positive effect on growth) or angiosperms on seaweeds (except for positive effect on ‘other processes’); and (v) bivalve interactions with other FS were typically more positive at higher temperatures, but angiosperm‐seaweed interactions were not moderated by temperature.Synthesis: Despite variations in experimental and spatiotemporal conditions, the stronger positive interactions at higher temperatures suggest that facilitation, particularly involving bivalves, may become more important in a future warmer world. Importantly, addressing research gaps, such as the scarcity of FS interaction experiments from tropical and freshwater systems and for less studied species, as well as testing for density‐dependent effects, could better inform aquatic ecosystem conservation and restoration efforts and broaden our knowledge of FS interactions in the Anthropocene.
Jiménez-López, D. A., M. J. Carmona-Higuita, G. Mendieta-Leiva, R. Martínez-Camilo, A. Espejo-Serna, T. Krömer, N. Martínez-Meléndez, and N. Ramírez-Marcial. 2023. Linking different resources to recognize vascular epiphyte richness and distribution in a mountain system in southeastern Mexico. Flora: 152261. https://doi.org/10.1016/j.flora.2023.152261
Mesoamerican mountains are important centers of endemism and diversity of epiphytes. The Sierra Madre of Chiapas in southeastern Mexico is a mountainous region of great ecological interest due to its high biological richness. We present the first checklist of epiphytes for this region based on a compilation of various information sources. In addition, we determined the conservation status for each species based on the Mexican Official Standard (NOM-059-SEMARNAT-2010), endemism based on geopolitical boundaries, spatial completeness with inventory completeness index, richness distribution with range maps, and the relationship between climatic variables (temperature and rainfall) with species richness using generalized additive models. Our dataset includes 9,799 records collected between 1896-2017. Our checklist includes 708 epiphytes within 160 genera and 26 families; the most species-rich family was Orchidaceae (355 species), followed by Bromeliaceae (82) and Polypodiaceae (79). There were 74 species within a category of risk and 59 species considered endemic. Completeness of epiphyte richness suggests that sampling is still largely incomplete, particularly in the lower parts of the mountain system. Species and family range maps show the highest richness at high elevations, while geographically richness increases towards the southeast. Epiphyte richness increases with increased rainfall, although a unimodal pattern was observed along the temperature gradient with a species richness peak between 16-20 C°. The Sierra Madre of Chiapas forms a refuge to more than 40% of all epiphytes reported for Mexico and its existing network of protected areas overlaps with the greatest epiphyte richness.
Jacquemyn, H., T. Pankhurst, P. S. Jones, R. Brys, and M. J. Hutchings. 2023. Biological Flora of Britain and Ireland: Liparis loeselii. Journal of Ecology. https://doi.org/10.1111/1365-2745.14086
This account presents information on all aspects of the biology of Liparis loeselii (L.) Rich. (Fen Orchid) that are relevant to understanding its ecological characteristics and behaviour. The main topics are presented within the standard framework of the Biological Flora of Britain and Ireland: distribution, habitat, communities, responses to biotic factors, responses to environment, structure and physiology, phenology, floral and seed characters, herbivores and disease, history and conservation.Liparis loeselii is a small terrestrial orchid that has a circumboreal distribution and is widespread in Europe and North America. Despite its wide distribution, the species is locally rare and has declined considerably in most of its range. In Britain, the species has a disjunct distribution and is now known to occur consistently at only six sites in eastern England and three in south Wales. It is absent from Ireland. Its most characteristic habitats in Britain are inland fens and coastal dune slacks, but outside Britain it can also be found in wet meadows, marshes, forested seep springs, at lake borders or on mats of floating peat.Populations of Liparis loeselii in dune slacks tend to be short‐lived, and can rapidly increase in size or decrease and disappear as environmental conditions change. The species does not tolerate high nutrient concentrations or low pH. It is susceptible to drought, which reduces seed germination, seedling recruitment and adult survival. Heavy predation by rabbits and rodents has been observed under drought conditions.Liparis loeselii reproduces both by sexual reproduction, and by vegetative propagation through the production of pseudobulbs. Although flowers are accessible to insects, entomophilous pollination is unusual, and most sexual reproduction is the result of selfing. Fruits ripen late in the growing season (mid‐October) and the dust‐like seeds are dispersed during winter by wind and water. Germination occurs during the following growing season and is supported by a wide variety of mycorrhizal fungi.Since the late 19th century Liparis loeselii has declined considerably in Britain and elsewhere in Europe, primarily due to habitat destruction and loss, natural succession, and habitat desiccation due to drainage. As a result, the species has been listed as endangered in the Bern Convention and the European Habitat Directive (92/43/EEC), and is the focus of intensive conservation efforts in many countries. Restoration of habitat by mowing, extensive grazing, peat removal, and the creation of new habitat by dune slack formation in dune systems and peat removal in fens may prolong population persistence and promote establishment of new populations.
Reichgelt, T., A. Baumgartner, R. Feng, and D. A. Willard. 2023. Poleward amplification, seasonal rainfall and forest heterogeneity in the Miocene of the eastern USA. Global and Planetary Change 222: 104073. https://doi.org/10.1016/j.gloplacha.2023.104073
Paleoclimate reconstructions can provide a window into the environmental conditions in Earth history when atmospheric carbon dioxide concentrations were higher than today. In the eastern USA, paleoclimate reconstructions are sparse, because terrestrial sedimentary deposits are rare. Despite this, the eastern USA has the largest population and population density in North America, and understanding the effects of current and future climate change is of vital importance. Here, we provide terrestrial paleoclimate reconstructions of the eastern USA from Miocene fossil floras. Additionally, we compare proxy paleoclimate reconstructions from the warmest period in the Miocene, the Miocene Climatic Optimum (MCO), to those of an MCO Earth System Model. Reconstructed Miocene temperatures and precipitation north of 35°N are higher than modern. In contrast, south of 35°N, temperatures and precipitation are similar to today, suggesting a poleward amplification effect in eastern North America. Reconstructed Miocene rainfall seasonality was predominantly higher than modern, regardless of latitude, indicating greater variability in intra-annual moisture transport. Reconstructed climates are almost uniformly in the temperate seasonal forest biome, but heterogeneity of specific forest types is evident. Reconstructed Miocene terrestrial temperatures from the eastern USA are lower than modeled temperatures and coeval Atlantic sea surface temperatures. However, reconstructed rainfall is consistent with modeled rainfall. Our results show that during the Miocene, climate was most different from modern in the northeastern states, and may suggest a drastic reduction in the meridional temperature gradient along the North American east coast compared to today.
Kroonen, G., A. Jakob, A. I. Palmér, P. van Sluis, and A. Wigman. 2022. Indo-European cereal terminology suggests a Northwest Pontic homeland for the core Indo-European languages S. Wichmann [ed.],. PLOS ONE 17: e0275744. https://doi.org/10.1371/journal.pone.0275744
Questions on the timing and the center of the Indo-European language dispersal are central to debates on the formation of the European and Asian linguistic landscapes and are deeply intertwined with questions on the archaeology and population history of these continents. Recent palaeogenomic studies support scenarios in which the core Indo-European languages spread with the expansion of Early Bronze Age Yamnaya herders that originally inhabited the East European steppes. Questions on the Yamnaya and Pre-Yamnaya locations of the language community that ultimately gave rise to the Indo-European language family are heavily dependent on linguistic reconstruction of the subsistence of Proto-Indo-European speakers. A central question, therefore, is how important the role of agriculture was among the speakers of this protolanguage. In this study, we perform a qualitative etymological analysis of all previously postulated Proto-Indo-European terminology related to cereal cultivation and cereal processing. On the basis of the evolution of the subsistence strategies of consecutive stages of the protolanguage, we find that one or perhaps two cereal terms can be reconstructed for the basal Indo-European stage, also known as Indo-Anatolian, but that core Indo-European, here also including Tocharian, acquired a more elaborate set of terms. Thus, we linguistically document an important economic shift from a mostly non-agricultural to a mixed agro-pastoral economy between the basal and core Indo-European speech communities. It follows that the early, eastern Yamnaya of the Don-Volga steppe, with its lack of evidence for agricultural practices, does not offer a perfect archaeological proxy for the core Indo-European language community and that this stage of the language family more likely reflects a mixed subsistence as proposed for western Yamnaya groups around or to the west of the Dnieper River.