Science Enabled by Specimen Data

Gachambi Mwangi, J., J. Haggar, S. Mohammed, T. Santika, and K. Mustapha Umar. 2023. The ecology, distribution, and anthropogenic threats of multipurpose hemi-parasitic plant Osyris lanceolata. Journal for Nature Conservation 76: 126478. https://doi.org/10.1016/j.jnc.2023.126478

Osyris lanceolata Hochst. & Steud. ex A. DC. is a multipurpose plant with high socioeconomic and cultural values. It is endangered in the biogeographical region of eastern Africa, but of less concern in other regions where it occurs. The few natural populations remaining in the endangered sites continue to encounter many threats, and this has raised concerns about its long-term sustainability. Yet, existing knowledge about the ecology and distribution of the plant is scarce to inform strategies for the conservation and sustainable management of the species. In this study, we conducted a scoping review of the available literature on current knowledge about the plant. We recapitulated existing knowledge about the abiotic and biotic factors influencing the contemporary distribution of the plant, the anthropogenic threats, and existing conservation efforts. Based on the limited studies we reviewed, we identified that the plant prefers specific habitats (hilly areas and rocky outcrops), frequently parasitizes Fabaceae but can parasitize plants from a wide range of countries, have inadequate ex-situ propagation protocols which present issues for the survival of the species. Overharvesting from the wild driven by demand from regional and global markets poses further threats to the existing natural populations, especially in eastern Africa. A combination of ecological, social, and trade-related conservation measures can be envisioned to help improve the plant’s persistence. These include, but are not limited to, a better understanding of the species ecology to inform conservation planning, monitoring of trade flow and improve transnational environmental laws and cooperation among countries to prevent species smuggling.

Borges, C. E., R. Von dos Santos Veloso, C. A. da Conceição, D. S. Mendes, N. Y. Ramirez-Cabral, F. Shabani, M. Shafapourtehrany, et al. 2023. Forecasting Brassica napus production under climate change with a mechanistic species distribution model. Scientific Reports 13. https://doi.org/10.1038/s41598-023-38910-3

Brassica napus , a versatile crop with significant socioeconomic importance, serves as a valuable source of nutrition for humans and animals while also being utilized in biodiesel production. The expansion potential of B. napus is profoundly influenced by climatic variations, yet there remains a scarcity of studies investigating the correlation between climatic factors and its distribution. This research employs CLIMEX to identify the current and future ecological niches of B. napus under the RCP 8.5 emission scenario, utilizing the Access 1.0 and CNRM-CM5 models for the time frame of 2040–2059. Additionally, a sensitivity analysis of parameters was conducted to determine the primary climatic factors affecting B. napus distribution and model responsiveness. The simulated outcomes demonstrate a satisfactory alignment with the known current distribution of B. napus , with 98% of occurrence records classified as having medium to high climatic suitability. However, the species displays high sensitivity to thermal parameters, thereby suggesting that temperature increases could trigger shifts in suitable and unsuitable areas for B. napus , impacting regions such as Canada, China, Brazil, and the United States.

Akinlabi, F. M., M. D. Pirie, and A. A. Oskolski. 2023. Fire, frost, and drought constrain the structural diversity of wood within southern African Erica (Ericaceae). Botanical Journal of the Linnean Society. https://doi.org/10.1093/botlinnean/boad033

Erica comprises ~860 species of evergreen shrubs and trees ranged from Europe to southern Africa and Madagascar. Wood structure of the around 20 European species is well studied, but despite its relevance to adaptation across the wider geographic range, it has not yet been explored across the much greater diversity, particularly of southern African lineages. In this study, we examine wood structure of 28 Erica species from southern Africa. In the African Erica clade, loss of scalariform perforation plates could be driven by increased aridity and seasonality in the mid-Miocene, and its re-gain can represent an adaptation to freezing in the high elevation species E. nubigena. As vessels in Erica are mostly solitary, imperforate tracheary elements probably form a subsidiary conduit network instead of vessel groups. Increase of ray frequency in habitats with a prominent dry and hot season probably facilitates refilling of vessels after embolism caused by water stress. Wider rays are ancestral for the lineage comprising African Erica and the Mediterranean E. australis. The negative correlation between ray width and expression of summer drought is consistent with Ojeda’s model explaining the diversification of seeders and resprouters among southern African Erica.

Maurin, O., A. Anest, F. Forest, I. Turner, R. L. Barrett, R. C. Cowan, L. Wang, et al. 2023. Drift in the tropics: Phylogenetics and biogeographical patterns in Combretaceae. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13737

Aim The aim of this study was to further advance our understanding of the species-rich, and ecologically important angiosperm family Combretaceae to provide new insights into their evolutionary history. We assessed phylogenetic relationships in the family using target capture data and produced a dated phylogenetic tree to assess fruit dispersal modes and patterns of distribution. Location Tropical and subtropical regions. Time Period Cretaceous to present. Major Taxa Studied Family Combretaceae is a member of the rosid clade and comprises 10 genera and more than 500 species, predominantly assigned to genera Combretum and Terminalia, and occurring on all continents and in a wide range of ecosystems. Methods We use a target capture approach and the Angiosperms353 universal probes to reconstruct a robust dated phylogenetic tree for the family. This phylogenetic framework, combined with seed dispersal traits, biome data and biogeographic ranges, allows the reconstruction of the biogeographical history of the group. Results Ancestral range reconstructions suggest a Gondwanan origin (Africa/South America), with several intercontinental dispersals within the family and few transitions between biomes. Relative abundance of fruit dispersal types differed by both continent and biome. However, intercontinental colonizations were only significantly enhanced by water dispersal (drift fruit), and there was no evidence that seed dispersal modes influenced biome shifts. Main Conclusions Our analysis reveals a paradox as drift fruit greatly enhanced dispersal distances at intercontinental scale but did not affect the strong biome conservatism observed.

Onditi, K. O., W. Song, X. Li, S. Musila, Z. Chen, Q. Li, J. Mathenge, et al. 2023. Untangling key abiotic predictors of terrestrial mammal diversity patterns across ecoregions and species groups in Kenya. Ecological Indicators 154: 110595. https://doi.org/10.1016/j.ecolind.2023.110595

Understanding the interactions between abiotic (environmental and anthropogenic) factors and species diversity and distribution patterns is fundamental to improving the ecological representativeness of biodiversity management tools such as protected areas (PAs). However, significant knowledge gaps remain about how species’ ecological and evolutionary opportunities are associated with abiotic factors, especially in biodiversity-rich but economically ill-equipped countries such as Kenya. Here, we explored the interactions of terrestrial mammal diversity patterns and abiotic factors across species groups and ecoregions in Kenya. We coupled data on terrestrial mammal occurrences, phylogeny, functional traits, and environmental predictors in Kenya to derive multiple diversity indices, encompassing species richness and phylogenetic and functional richness, and mean pairwise and nearest taxon distances. We explored the interactions of these indices with several abiotic factors using multivariate regression analyses while adjusting for spatial autocorrelation. The results showed weak correlations between species richness versus the phylogenetic and functional diversity indices. The best-fit models explained variable proportions of diversity indices between species groups and ecoregions and consistently retained annual temperature and precipitation averages and seasonality and human footprint as the strongest predictors. Compared to the species-poor xeric northern and eastern Kenya regions, the predictors had weak associations with diversity variances in the species-rich mesic western and central Kenya regions, similar to focal species groups compared to ordinal classifications and the combined species pool. These findings illustrate that climate and human footprint interplay determine multiple facets of terrestrial mammal diversity patterns in Kenya. Accordingly, curbing human activities degrading long-term climatic regimes is vital to ensuring the ecological integrity of terrestrial mammal communities and should be integrated into biodiversity management frameworks. For a holistic representation of critical conservation areas, biodiversity managements should also prioritize terrestrial mammal phylogenetic and functional attributes besides species richness.

Hill, A., M. F. T. Jiménez, N. Chazot, C. Cássia‐Silva, S. Faurby, L. Herrera‐Alsina, and C. D. Bacon. 2023. Apparent effect of range size and fruit colour on palm diversification may be spurious. Journal of Biogeography. https://doi.org/10.1111/jbi.14683

Aim Fruit selection by animal dispersers with different mobility directly impacts plant geographical range size, which, in turn, may impact plant diversification. Here, we examine the interaction between fruit colour, range size and diversification rate in palms by testing two hypotheses: (1) species with fruit colours attractive to birds have larger range sizes due to high dispersal ability and (2) disperser mobility affects whether small or large range size has higher diversification, and intermediate range size is expected to lead to the highest diversification rate regardless of disperser. Location Global. Time Period Contemporary (or present). Major Taxa Studied Palms (Arecaceae). Methods Palm species were grouped based on likely animal disperser group for given fruit colours. Range sizes were estimated by constructing alpha convex hull polygons from distribution data. We examined disperser group, range size or an interaction of both as possible drivers of change in diversification rate over time in a likelihood dynamic model (Several Examined State-dependent Speciation and Extinction [SecSSE]). Models were fitted, rate estimates were retrieved and likelihoods were compared to those of appropriate null models. Results Species with fruit colours associated with mammal dispersal had larger ranges than those with colours associated with bird dispersal. The best fitting SecSSE models indicated that the examined traits were not the primary driver of the heterogeneity in diversification rates in the model. Extinction rate complexity had a marked impact on model performance and on diversification rates. Main Conclusions Two traits related to dispersal mobility, range size and fruit colour, were not identified as the main drivers of diversification in palms. Increased model extinction rate complexity led to better performing models, which indicates that net diversification should be estimated rather than speciation alone. However, increased complexity may lead to incorrect SecSSE model conclusions without careful consideration. Finally, we find palms with more mobile dispersers do not have larger range sizes, meaning other factors are more important determinants of range size.

Cousins-Westerberg, R., N. Dakin, L. Schat, G. Kadereit, and A. M. Humphreys. 2023. Evolution of cold tolerance in the highly stress-tolerant samphires and relatives (Salicornieae: Amaranthaceae). Botanical Journal of the Linnean Society. https://doi.org/10.1093/botlinnean/boad009

Low temperature constitutes one of the main barriers to plant distributions, confining many clades to their ancestrally tropical biome. However, recent evidence suggests that transitions from tropical to temperate biomes may be more frequent than previously thought. Here, we study the evolution of cold and frost tolerance in the globally distributed and highly stress-tolerant Salicornieae (Salicornioideae, Amaranthaceae s.l.). We first generate a phylogenetic tree comprising almost all known species (85-90%), using newly generated (n = 106) and published nuclear-ribosomal and plastid sequences. Next, we use geographical occurrence data to document in which clades and geographical regions cold-tolerant species occur and reconstruct how cold tolerance evolved. Finally, we test for correlated evolution between frost tolerance and the annual life form. We find that frost tolerance has evolved independently in up to four Northern Hemisphere lineages but that annuals are no more likely to evolve frost tolerance than perennials, indicating the presence of different strategies for adapting to cold environments. Our findings add to mounting evidence for multiple independent out-of-the-tropics transitions among close relatives of flowering plants and raise new questions about the ecological and physiological mechanism(s) of adaptation to low temperatures in Salicornieae.

Cosme, M. 2023. Mycorrhizas drive the evolution of plant adaptation to drought. Communications Biology 6. https://doi.org/10.1038/s42003-023-04722-4

Plant adaptation to drought facilitates major ecological transitions, and will likely play a vital role under looming climate change. Mycorrhizas, i.e. strategic associations between plant roots and soil-borne symbiotic fungi, can exert strong influence on the tolerance to drought of extant plants. Here, I show how mycorrhizal strategy and drought adaptation have been shaping one another throughout the course of plant evolution. To characterize the evolutions of both plant characters, I applied a phylogenetic comparative method using data of 1,638 extant species globally distributed. The detected correlated evolution unveiled gains and losses of drought tolerance occurring at faster rates in lineages with ecto- or ericoid mycorrhizas, which were on average about 15 and 300 times faster than in lineages with the arbuscular mycorrhizal and naked root (non-mycorrhizal alone or with facultatively arbuscular mycorrhizal) strategy, respectively. My study suggests that mycorrhizas can play a key facilitator role in the evolutionary processes of plant adaptation to critical changes in water availability across global climates. Phylogenetic comparative analysis using data of 1,638 species of angiosperms and gymnosperms suggests that the evolution of plant adaptation to critical environmental change in water availability across global climates is dependent on mycorrhizas.

Reichgelt, T., A. Baumgartner, R. Feng, and D. A. Willard. 2023. Poleward amplification, seasonal rainfall and forest heterogeneity in the Miocene of the eastern USA. Global and Planetary Change 222: 104073. https://doi.org/10.1016/j.gloplacha.2023.104073

Paleoclimate reconstructions can provide a window into the environmental conditions in Earth history when atmospheric carbon dioxide concentrations were higher than today. In the eastern USA, paleoclimate reconstructions are sparse, because terrestrial sedimentary deposits are rare. Despite this, the eastern USA has the largest population and population density in North America, and understanding the effects of current and future climate change is of vital importance. Here, we provide terrestrial paleoclimate reconstructions of the eastern USA from Miocene fossil floras. Additionally, we compare proxy paleoclimate reconstructions from the warmest period in the Miocene, the Miocene Climatic Optimum (MCO), to those of an MCO Earth System Model. Reconstructed Miocene temperatures and precipitation north of 35°N are higher than modern. In contrast, south of 35°N, temperatures and precipitation are similar to today, suggesting a poleward amplification effect in eastern North America. Reconstructed Miocene rainfall seasonality was predominantly higher than modern, regardless of latitude, indicating greater variability in intra-annual moisture transport. Reconstructed climates are almost uniformly in the temperate seasonal forest biome, but heterogeneity of specific forest types is evident. Reconstructed Miocene terrestrial temperatures from the eastern USA are lower than modeled temperatures and coeval Atlantic sea surface temperatures. However, reconstructed rainfall is consistent with modeled rainfall. Our results show that during the Miocene, climate was most different from modern in the northeastern states, and may suggest a drastic reduction in the meridional temperature gradient along the North American east coast compared to today.

Kagnew, B., A. Assefa, and A. Degu. 2022. Modeling the Impact of Climate Change on Sustainable Production of Two Legumes Important Economically and for Food Security: Mungbeans and Cowpeas in Ethiopia. Sustainability 15: 600. https://doi.org/10.3390/su15010600

Climate change is one of the most serious threats to global crops production at present and it will continue to be the largest threat in the future worldwide. Knowing how climate change affects crop productivity might help sustainability and crop improvement efforts. Under existing and projected climate change scenarios (2050s and 2070s in Ethiopia), the effect of global warming on the distribution of V. radiata and V. unguiculata was investigated. MaxEnt models were used to predict the current and future distribution pattern changes of these crops in Ethiopia using different climate change scenarios (i.e., lowest (RCP 2.6), moderate (RCP 4.5), and extreme (RCP 8.5)) for the years 2050s and 2070s. The study includes 81 and 68 occurrence points for V. radiata and V. unguiculata, respectively, along with 22 environmental variables. The suitability maps indicate that the Beneshangul Gumuz, Oromia, Amhara, SNNPR, and Tigray regions are the major Ethiopian regions with the potential to produce V. radiata, while Amhara, Gambella, Oromia, SNNPR, and Tigray are suitable for producing V. unguiculata. The model prediction for V. radiata habitat ranges distribution in Ethiopia indicated that 1.69%, 4.27%, 11.25% and 82.79% are estimated to be highly suitable, moderately suitable, less suitable, and unsuitable, respectively. On the other hand, the distribution of V. unguiculata is predicted to have 1.27%, 3.07%, 5.22%, and 90.44% habitat ranges that are highly suitable, moderately suitable, less suitable, and unsuitable, respectively, under the current climate change scenario by the year (2050s and 2070s) in Ethiopia. Among the environmental variables, precipitation of the wettest quarter (Bio16), solar radiation index (SRI), temperature seasonality (Bio4), and precipitation seasonality (Bio15) are discovered to be the most effective factors for defining habitat suitability for V. radiata, while precipitation of the wettest quarter (Bio16), temperature annual range (Bio7) and precipitation of the driest quarter (Bio17) found to be better habitat suitability indicator for V. unguiculata in Ethiopia. The result indicates that these variables were more relevant in predicting suitable habitat for these crops in Ethiopia. A future projection predicts that the suitable distribution region will become increasingly fragmented. In general, the study provides a scientific basis of suitable agro-ecological habitat for V. radiata and V. unguiculata for long-term crop management and production improvement in Ethiopia. Therefore, projections of current and future climate change impacts on such crops are vital to reduce the risk of crop failure and to identify the potential productive areas in the country.