Science Enabled by Specimen Data

Kor, L., and M. Diazgranados. 2023. Identifying important plant areas for useful plant species in Colombia. Biological Conservation 284: 110187.

While area-based approaches continue to dominate biodiversity conservation, there is growing recognition of the importance of the human dimensions of biodiversity. We applied the Important Plant Areas (IPA) approach in Colombia to identify key sites for the conservation of plant species with reported human uses. Drawing on the Checklist of Useful Plants of Colombia, we collated 1,045,889 clean occurrence records for 5400 native species from global data repositories and digitized herbaria. Through analysis based on regionalized grid cells, we identified 980 sites meeting IPA thresholds. These are primarily located in forest habitats, with only 19.8 % within existing national natural parks or internationally designated conservation areas. Grid cells were transformed to polygons based on overlapping ecosystems and administrative boundaries to form more meaningful site boundaries. A subsequent two-stage ranking procedure based on conservation value and richness found 46 sites to be of high priority, with 10 selected as top priorities for further investigation and conservation action. These 10 sites support significant populations of 33 threatened useful plant species and represent six of the 13 bioregions of Colombia in just 0.27 % of its land area. To progress from potential to confirmed IPAs, targeted fieldwork is required alongside stakeholder engagement and consultation, crucially involving local resource users. As a megadiverse country ranked second in the world for its botanical richness, effective IPA management would not only contribute to Colombian targets for sustainable development and conservation but would also support global targets to recover biodiversity for both planet and people.

Cousins-Westerberg, R., N. Dakin, L. Schat, G. Kadereit, and A. M. Humphreys. 2023. Evolution of cold tolerance in the highly stress-tolerant samphires and relatives (Salicornieae: Amaranthaceae). Botanical Journal of the Linnean Society.

Low temperature constitutes one of the main barriers to plant distributions, confining many clades to their ancestrally tropical biome. However, recent evidence suggests that transitions from tropical to temperate biomes may be more frequent than previously thought. Here, we study the evolution of cold and frost tolerance in the globally distributed and highly stress-tolerant Salicornieae (Salicornioideae, Amaranthaceae s.l.). We first generate a phylogenetic tree comprising almost all known species (85-90%), using newly generated (n = 106) and published nuclear-ribosomal and plastid sequences. Next, we use geographical occurrence data to document in which clades and geographical regions cold-tolerant species occur and reconstruct how cold tolerance evolved. Finally, we test for correlated evolution between frost tolerance and the annual life form. We find that frost tolerance has evolved independently in up to four Northern Hemisphere lineages but that annuals are no more likely to evolve frost tolerance than perennials, indicating the presence of different strategies for adapting to cold environments. Our findings add to mounting evidence for multiple independent out-of-the-tropics transitions among close relatives of flowering plants and raise new questions about the ecological and physiological mechanism(s) of adaptation to low temperatures in Salicornieae.

Kroonen, G., A. Jakob, A. I. Palmér, P. van Sluis, and A. Wigman. 2022. Indo-European cereal terminology suggests a Northwest Pontic homeland for the core Indo-European languages S. Wichmann [ed.],. PLOS ONE 17: e0275744.

Questions on the timing and the center of the Indo-European language dispersal are central to debates on the formation of the European and Asian linguistic landscapes and are deeply intertwined with questions on the archaeology and population history of these continents. Recent palaeogenomic studies support scenarios in which the core Indo-European languages spread with the expansion of Early Bronze Age Yamnaya herders that originally inhabited the East European steppes. Questions on the Yamnaya and Pre-Yamnaya locations of the language community that ultimately gave rise to the Indo-European language family are heavily dependent on linguistic reconstruction of the subsistence of Proto-Indo-European speakers. A central question, therefore, is how important the role of agriculture was among the speakers of this protolanguage. In this study, we perform a qualitative etymological analysis of all previously postulated Proto-Indo-European terminology related to cereal cultivation and cereal processing. On the basis of the evolution of the subsistence strategies of consecutive stages of the protolanguage, we find that one or perhaps two cereal terms can be reconstructed for the basal Indo-European stage, also known as Indo-Anatolian, but that core Indo-European, here also including Tocharian, acquired a more elaborate set of terms. Thus, we linguistically document an important economic shift from a mostly non-agricultural to a mixed agro-pastoral economy between the basal and core Indo-European speech communities. It follows that the early, eastern Yamnaya of the Don-Volga steppe, with its lack of evidence for agricultural practices, does not offer a perfect archaeological proxy for the core Indo-European language community and that this stage of the language family more likely reflects a mixed subsistence as proposed for western Yamnaya groups around or to the west of the Dnieper River.

Marcussen, T., H. E. Ballard, J. Danihelka, A. R. Flores, M. V. Nicola, and J. M. Watson. 2022. A Revised Phylogenetic Classification for Viola (Violaceae). Plants 11: 2224.

The genus Viola (Violaceae) is among the 40–50 largest genera among angiosperms, yet its taxonomy has not been revised for nearly a century. In the most recent revision, by Wilhelm Becker in 1925, the then-known 400 species were distributed among 14 sections and numerous unranked groups. Here, we provide an updated, comprehensive classification of the genus, based on data from phylogeny, morphology, chromosome counts, and ploidy, and based on modern principles of monophyly. The revision is presented as an annotated global checklist of accepted species of Viola, an updated multigene phylogenetic network and an ITS phylogeny with denser taxon sampling, a brief summary of the taxonomic changes from Becker’s classification and their justification, a morphological binary key to the accepted subgenera, sections and subsections, and an account of each infrageneric subdivision with justifications for delimitation and rank including a description, a list of apomorphies, molecular phylogenies where possible or relevant, a distribution map, and a list of included species. We distribute the 664 species accepted by us into 2 subgenera, 31 sections, and 20 subsections. We erect one new subgenus of Viola (subg. Neoandinium, a replacement name for the illegitimate subg. Andinium), six new sections (sect. Abyssinium, sect. Himalayum, sect. Melvio, sect. Nematocaulon, sect. Spathulidium, sect. Xanthidium), and seven new subsections (subsect. Australasiaticae, subsect. Bulbosae, subsect. Clausenianae, subsect. Cleistogamae, subsect. Dispares, subsect. Formosanae, subsect. Pseudorupestres). Evolution within the genus is discussed in light of biogeography, the fossil record, morphology, and particular traits. Viola is among very few temperate and widespread genera that originated in South America. The biggest identified knowledge gaps for Viola concern the South American taxa, for which basic knowledge from phylogeny, chromosome counts, and fossil data is virtually absent. Viola has also never been subject to comprehensive anatomical study. Studies into seed anatomy and morphology are required to understand the fossil record of the genus.

Gori, B., T. Ulian, H. Y. Bernal, and M. Diazgranados. 2022. Understanding the diversity and biogeography of Colombian edible plants. Scientific Reports 12.

Despite being the second most biodiverse country in the world, hosting more than 7000 useful species, Colombia is characterized by widespread poverty and food insecurity. Following the growing attention in Neglected and Underutilized Species, the present study will combine spatial and taxonomic analysis to unveil their diversity and distribution, as well as to advocate their potential as key resources for tackling food security in the country. The cataloguing of Colombian edible plants resulted in 3805 species. Among these, the most species-rich genera included Inga, Passiflora, Miconia, Solanum, Pouteria , Protium , Annona and Bactris . Biogeographic analysis revealed major diversity hotspots in the Andean humid forests by number of records, species, families, and genera. The departments of Antioquia, Boyacá, Meta, and Cundinamarca ranked first both in terms of number of unique georeferenced records and species of edible plants. Significant information gaps about species distribution were detected in the departments of Cesar, Sucre, Atlántico, Vichada, and Guainía, corresponding to the Caribe and Llanos bioregions, indicating the urgent need for focusing investigation in these areas. Furthermore, a significant level of geographic specificity was found in edible plant species’ distributions between 13 different bioregions and 33 departments, hinting the adoption of tailorized prioritisation protocols for the conservation and revitalization of such resources at the local level.

Ramirez-Villegas, J., C. K. Khoury, H. A. Achicanoy, M. V. Diaz, A. C. Mendez, C. C. Sosa, Z. Kehel, et al. 2022. State of ex situ conservation of landrace groups of 25 major crops. Nature Plants 8: 491–499.

Crop landraces have unique local agroecological and societal functions and offer important genetic resources for plant breeding. Recognition of the value of landrace diversity and concern about its erosion on farms have led to sustained efforts to establish ex situ collections worldwide. The degree to which these efforts have succeeded in conserving landraces has not been comprehensively assessed. Here we modelled the potential distributions of eco-geographically distinguishable groups of landraces of 25 cereal, pulse and starchy root/tuber/fruit crops within their geographic regions of diversity. We then analysed the extent to which these landrace groups are represented in genebank collections, using geographic and ecological coverage metrics as a proxy for genetic diversity. We find that ex situ conservation of landrace groups is currently moderately comprehensive on average, with substantial variation among crops; a mean of 63% ± 12.6% of distributions is currently represented in genebanks. Breadfruit, bananas and plantains, lentils, common beans, chickpeas, barley and bread wheat landrace groups are among the most fully represented, whereas the largest conservation gaps persist for pearl millet, yams, finger millet, groundnut, potatoes and peas. Geographic regions prioritized for further collection of landrace groups for ex situ conservation include South Asia, the Mediterranean and West Asia, Mesoamerica, sub-Saharan Africa, the Andean mountains of South America and Central to East Asia. With further progress to fill these gaps, a high degree of representation of landrace group diversity in genebanks is feasible globally, thus fulfilling international targets for their ex situ conservation. By analysing the state of representation of traditional varieties of 25 major crops in ex situ repositories, this study demonstrates conservation progress made over more than a half-century and identifies the gaps remaining to be filled.

Liang, S., X. Zhang, and R. Wei. 2022. Ecological adaptation shaped the genetic structure of homoploid ferns against strong dispersal capacity. Molecular Ecology 31: 2679–2697.

The formation of spatial genetic structure with the presence of extensive gene flow, an evolutionary force which is generally expected to eliminate population-specific variation and maintain genetic homogeneity, remains poorly understood. Homosporous ferns, which spread by spores through wind and possess long-distance dispersal capacity, provide an ideal system to investigate such a process. Here, using a homoploid fern lineage, the Athyrium sinense complex, we used reduced-representation genomic data to examine spatial genetic structure and explored potential driving forces including geographical distance, environment, climatic history and external dispersal constraints. Our findings showed a clear north-south divergence at the genetic, morphological and ecological levels between both sides of 35°N in East Asia. Fluctuant and heterogeneous climatic condition was demonstrated to play a crucial role during the formation of the divergence. Our results suggested that this lineage was able to migrate southward and colonize new habitat as a result of the Quaternary climatic fluctuation. Furthermore, the present genetic structure is attributed to adaptation to heterogeneous environments, especially temperature difference. In addition to ecological adaptation, we found clues showing that canopy density, wind direction as well as habitat continuity were all likely to constrain the effect of gene flow. These results demonstrated a diversification process without ploidy changes in ferns providing new insights for our present knowledge on ferns’ spatio-temporal evolutionary pattern. In particular, our study highlights the influence of environmental heterogeneity in driving genetic divergence against strong dispersal capacity.

Lloret, F., L. A. Jaime, J. Margalef-Marrase, M. A. Pérez-Navarro, and E. Batllori. 2022. Short-term forest resilience after drought-induced die-off in Southwestern European forests. Science of The Total Environment 806: 150940.

Drought-induced die-off in forests is becoming a widespread phenomenon across biomes, but the factors determining potential shifts in taxonomic and structural characteristics following mortality are largely unknown. We report on short-term patterns of resilience after drought-induced episodes of tre…

Grebennikov, K. 2021. Ecological niche modeling to assessment of potential distribution of Neodiprion abietis (Harris, 1841) (Insecta, Hymenoptera, Diprionidae) in Eurasia. International Journal of Agricultural Sciences and Technology 1: 1–7.

In the article first assesses the potential distribution in Eurasia of Neodiprion abietis (Harris, 1841) first time assessed. The species id a widely distributed in North America fir and spruce defoliator, intercepted in 2016 in the Netherlands. Analysis of the literature data on the known distribut…

Wang, C.-J., and J.-Z. Wan. 2021. Functional trait perspective on suitable habitat distribution of invasive plant species at a global scale. Perspectives in Ecology and Conservation 19: 475–486.

Plant invasion has been proved to threaten biodiversity conservation and ecosystem maintenance at a global scale. It is a challenge to project suitable habitat distributions of invasive plant species (IPS) for invasion risk assessment at large spatial scales. Interaction outcomes between native and …