Science Enabled by Specimen Data

Vasconcelos, T., Boyko, J. D., & Beaulieu, J. M. (2021). Linking mode of seed dispersal and climatic niche evolution in flowering plants. Journal of Biogeography. doi:10.1111/jbi.14292 https://doi.org/10.1111/jbi.14292

Aim: Due to the sessile nature of flowering plants, movements to new geographical areas occur mainly during seed dispersal. Frugivores tend to be efficient dispersers because animals move within the boundaries of their preferable niches, so seeds are more likely to be transported to environments tha…

Xue, T., Gadagkar, S. R., Albright, T. P., Yang, X., Li, J., Xia, C., … Yu, S. (2021). Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation, 32, e01885. doi:10.1016/j.gecco.2021.e01885 https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…

Ma, C.-S., Zhang, W., Peng, Y., Zhao, F., Chang, X.-Q., Xing, K., … Rudolf, V. H. W. (2021). Climate warming promotes pesticide resistance through expanding overwintering range of a global pest. Nature Communications, 12(1). doi:10.1038/s41467-021-25505-7 https://doi.org/10.1038/s41467-021-25505-7

Climate change has the potential to change the distribution of pests globally and their resistance to pesticides, thereby threatening global food security in the 21st century. However, predicting where these changes occur and how they will influence current pest control efforts is a challenge. Using…

De Oliveira, M. H. V., Torke, B. M., & Almeida, T. E. (2021). An inventory of the ferns and lycophytes of the Lower Tapajós River Basin in the Brazilian Amazon reveals collecting biases, sampling gaps, and previously undocumented diversity. Brittonia. doi:10.1007/s12228-021-09668-7 https://doi.org/10.1007/s12228-021-09668-7

Ferns and lycophytes are an excellent group for conservation and species distribution studies because they are closely related to environmental changes. In this study, we analyzed collection gaps, sampling biases, richness distribution, and the species conservation effectiveness of protected areas i…

O’Mahony, J., de la Torre Cerro, R., & Holloway, P. (2021). Modelling the Distribution of the Red Macroalgae Asparagopsis to Support Sustainable Aquaculture Development. AgriEngineering, 3(2), 251–265. doi:10.3390/agriengineering3020017 https://doi.org/10.3390/agriengineering3020017

Fermentative digestion by ruminant livestock is one of the main ways enteric methane enters the atmosphere, although recent studies have identified that including red macroalgae as a feed ingredient can drastically reduce methane produced by cattle. Here, we utilize ecological modelling to identify …

Rock, B. M., & Daru, B. H. (2021). Impediments to Understanding Seagrasses’ Response to Global Change. Frontiers in Marine Science, 8. doi:10.3389/fmars.2021.608867 https://doi.org/10.3389/fmars.2021.608867

Uncertainties from sampling biases present challenges to ecologists and evolutionary biologists in understanding species sensitivity to anthropogenic climate change. Here, we synthesize possible impediments that can constrain research to assess present and future seagrass response from climate chang…

Saldaña‐López, A., Vilà, M., Lloret, F., Manuel Herrera, J., & González‐Moreno, P. (2021). Assembly of species’ climatic niches of coastal communities does not shift after invasion. Journal of Vegetation Science, 32(2). doi:10.1111/jvs.12989 https://doi.org/10.1111/jvs.12989

Question: Do invasions by invasive plant species with contrasting trait profiles (Arctotheca calendula, Carpobrotus spp., Conyza bonariensis, and Opuntia dillenii) change the climatic niche of coastal plant communities? Location: Atlantic coastal habitats in Huelva (Spain). Methods: We identifi…

Paź-Dyderska, S., Jagodziński, A. M., & Dyderski, M. K. (2021). Possible changes in spatial distribution of walnut (Juglans regia L.) in Europe under warming climate. Regional Environmental Change, 21(1). doi:10.1007/s10113-020-01745-z https://doi.org/10.1007/s10113-020-01745-z

Juglans regia L. is a species of great importance for environmental management due to attractive wood and nutritious fruits, but also high invasive potential. Thus, uncertainties connected with its range shift are essential for environmental management. We aimed to predict the future climatic optimu…

Allstädt, F. J., Koutsodendris, A., Appel, E., Rösler, W., Reichgelt, T., Kaboth-Bahr, S., … Pross, J. (2021). Late Pliocene to early Pleistocene climate dynamics in western North America based on a new pollen record from paleo-Lake Idaho. Palaeobiodiversity and Palaeoenvironments. doi:10.1007/s12549-020-00460-1 https://doi.org/10.1007/s12549-020-00460-1

Marked by the expansion of ice sheets in the high latitudes, the intensification of Northern Hemisphere glaciation across the Plio/Pleistocene transition at ~ 2.7 Ma represents a critical interval of late Neogene climate evolution. To date, the characteristics of climate change in North America duri…

Dobson-Waitere, A., MacIntosh, R., Ellison, M. F., Smallfield, B. M., & van Klink, J. W. (2021). Taramea, a treasured Māori perfume of Ngāi Tahu from Aciphylla species of Aotearoa New Zealand: a review of Mātauranga Māori and scientific research. Journal of the Royal Society of New Zealand, 1–17. doi:10.1080/03036758.2020.1856147 https://doi.org/10.1080/03036758.2020.1856147

Taramea is the prized resinous exudate obtained from native Aciphylla plants (speargrass) identified as a taonga by Ngāi Tahu Māori in their Treaty of Waitangi tribunal claim Settlement. Ngāi Tahu recognised two types of Aciphylla, the larger was known as taramea and used as a fragrance, while the t…