Science Enabled by Specimen Data

Örücü, Ö. K., H. Azadi, E. S. Arslan, Ö. Kamer Aksoy, S. Choobchian, S. N. Nooghabi, and H. I. Stefanie. 2023. Predicting the distribution of European Hop Hornbeam: application of MaxEnt algorithm and climatic suitability models. European Journal of Forest Research. https://doi.org/10.1007/s10342-023-01543-2

Ostrya carpinifolia Scop. (European Hop Hornbeam) is a native tree in Europe as a species of the Betulaceae family. European Hop Hornbeam has a significant value for the European flora, and assessing the effects of climate change on habitats of species is essential for its sustainability. With this point of view, the main aim of the research was to predict the present and future potential distribution of European Hop Hornbeam across Europe. ‘‘IPSL-CM6A-LR’’ climate change model, ninety-six occurrence data, and seven bioclimatic variables were used to predict potential distribution areas with MaxEnt 3.4.1 program. This study applied a change analysis by comparing the present predicted potential distribution of European Hop Hornbeam with the future predicted potential distribution under the 2041–2060 and 2081–2100 SSP2 4.5 and SSP5 8.5 climate change scenarios. Study results indicated that the sum of suitable and highly suitable areas of European Hop Hornbeam is calculated to be 1,136,706 km 2 for the current potential distribution. On the contrary, 2,107,187 km 2 of highly suitable and suitable areas will be diminished in the worst case by 2100. The most affected bioclimatic variable is BIO 19 (Precipitation of Coldest Quarter), considering the prediction of the species distribution. These findings indicated that the natural ecosystems of the Mediterranean region will shift to northern areas. This study represented a reference for creating a strategy for the protection and conservation of the species in the future.

Reichgelt, T., A. Baumgartner, R. Feng, and D. A. Willard. 2023. Poleward amplification, seasonal rainfall and forest heterogeneity in the Miocene of the eastern USA. Global and Planetary Change 222: 104073. https://doi.org/10.1016/j.gloplacha.2023.104073

Paleoclimate reconstructions can provide a window into the environmental conditions in Earth history when atmospheric carbon dioxide concentrations were higher than today. In the eastern USA, paleoclimate reconstructions are sparse, because terrestrial sedimentary deposits are rare. Despite this, the eastern USA has the largest population and population density in North America, and understanding the effects of current and future climate change is of vital importance. Here, we provide terrestrial paleoclimate reconstructions of the eastern USA from Miocene fossil floras. Additionally, we compare proxy paleoclimate reconstructions from the warmest period in the Miocene, the Miocene Climatic Optimum (MCO), to those of an MCO Earth System Model. Reconstructed Miocene temperatures and precipitation north of 35°N are higher than modern. In contrast, south of 35°N, temperatures and precipitation are similar to today, suggesting a poleward amplification effect in eastern North America. Reconstructed Miocene rainfall seasonality was predominantly higher than modern, regardless of latitude, indicating greater variability in intra-annual moisture transport. Reconstructed climates are almost uniformly in the temperate seasonal forest biome, but heterogeneity of specific forest types is evident. Reconstructed Miocene terrestrial temperatures from the eastern USA are lower than modeled temperatures and coeval Atlantic sea surface temperatures. However, reconstructed rainfall is consistent with modeled rainfall. Our results show that during the Miocene, climate was most different from modern in the northeastern states, and may suggest a drastic reduction in the meridional temperature gradient along the North American east coast compared to today.

Filartiga, A. L., A. Klimeš, J. Altman, M. P. Nobis, A. Crivellaro, F. Schweingruber, and J. Doležal. 2022. Comparative anatomy of leaf petioles in temperate trees and shrubs: the role of plant size, environment and phylogeny. Annals of Botany 129: 567–582. https://doi.org/10.1093/aob/mcac014

Background and Aims Petioles are important plant organs connecting stems with leaf blades and affecting light-harvesting ability of the leaf as well as transport of water, nutrients and biochemical signals. Despite the high diversity in petiole size, shape and anatomy, little information is availabl…

Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…

Cross, A. T., T. A. Krueger, P. M. Gonella, A. S. Robinson, and A. S. Fleischmann. 2020. Conservation of carnivorous plants in the age of extinction. Global Ecology and Conservation 24: e01272. https://doi.org/10.1016/j.gecco.2020.e01272

Carnivorous plants (CPs)—those possessing specific strategies to attract, capture and kill animal prey and obtain nutrition through the absorption of their biomass—are harbingers of anthropogenic degradation and destruction of ecosystems. CPs exhibit highly specialised and often very sensitive ecolo…

Brightly, W. H., S. E. Hartley, C. P. Osborne, K. J. Simpson, and C. A. E. Strömberg. 2020. High silicon concentrations in grasses are linked to environmental conditions and not associated with C 4 photosynthesis. Global Change Biology 26: 7128–7143. https://doi.org/10.1111/gcb.15343

The uptake and deposition of silicon (Si) as silica phytoliths is common among land plants and is associated with a variety of functions. Among these, herbivore defense has received significant attention, particularly with regards to grasses and grasslands. Grasses are well known for their high sili…

Sheppard, C. S., and F. M. Schurr. 2018. Biotic resistance or introduction bias? Immigrant plant performance decreases with residence times over millennia. Global Ecology and Biogeography. https://doi.org/10.1111/geb.12844

Aim: Invasions are dynamic processes. Invasive spread causes the geographical range size of alien species to increase with residence time. However, with time native competitors and antagonists can adapt to invaders. This build‐up of biotic resistance may eventually limit the invader’s performance an…

Wan, J.-Z., C.-J. Wang, and F.-H. Yu. 2019. Large-scale environmental niche variation between clonal and non-clonal plant species: Roles of clonal growth organs and ecoregions. Science of The Total Environment 652: 1071–1076. https://doi.org/10.1016/j.scitotenv.2018.10.280

Clonal plant species can produce genetically identical and potentially independent offspring, and dominate a variety of habitats. The divergent evolutionary mechanisms between clonal and non-clonal plants are interesting areas of ecological research. A number of studies have shown that the environme…

Caudullo, G., E. Welk, and J. San-Miguel-Ayanz. 2017. Chorological maps for the main European woody species. Data in Brief 12: 662–666. https://doi.org/10.1016/j.dib.2017.05.007

A novel chorological data compilation for the main European tree and shrub species is presented. This dataset was produced by combining numerous and heterogeneous data collected from 20th century atlas monographs providing complete species distribution maps, and from more recent national to regional…