Science Enabled by Specimen Data

Hamer, M., M. Kgatla, and B. Petersen. 2023. An assessment of collection specimen data for South African mountain plants and invertebrates. Transactions of the Royal Society of South Africa: 1–19. https://doi.org/10.1080/0035919x.2023.2200742

South Africa is considered a megadiverse country, with exceptionally high plant and relatively high animal species richness and endemism. The country’s species have been surveyed and studied for over 200 years, resulting in extensive natural science collections and a vast number of scientific papers and books. This study assessed whether existing data portals provide access to occurrence data and investigated the extent of the data in Global Biodiversity Information Facility and its completeness for plants and selected invertebrate taxa. The main focus was preserved specimen data, but some observation data from iNaturalist were also considered for selected analyses. Records that include species-level identification and co-ordinates were mapped in QGIS to show the coverage of collection localities across the country. The records that fall within the mountain range spatial layer were then extracted and counted to identify density of records per mountain range for various taxa. Forty percent of plant records are from mountain localities, and the Atlantic Cape Fold Mountains had the highest density of records. Table Mountain has been extensively collected for plants and invertebrates. A large proportion of the records for invertebrates lacked species-level identification and co-ordinates, resulting in a low number of records for analyses. The accessible data are only a relatively small subset of existing collections, and digitisation and data upgrading is considered a high priority before collecting gaps can be addressed by targeted surveys.

Sánchez, C. A., H. Li, K. L. Phelps, C. Zambrana-Torrelio, L.-F. Wang, P. Zhou, Z.-L. Shi, et al. 2022. A strategy to assess spillover risk of bat SARS-related coronaviruses in Southeast Asia. Nature Communications 13. https://doi.org/10.1038/s41467-022-31860-w

Emerging diseases caused by coronaviruses of likely bat origin (e.g., SARS, MERS, SADS, COVID-19) have disrupted global health and economies for two decades. Evidence suggests that some bat SARS-related coronaviruses (SARSr-CoVs) could infect people directly, and that their spillover is more frequent than previously recognized. Each zoonotic spillover of a novel virus represents an opportunity for evolutionary adaptation and further spread; therefore, quantifying the extent of this spillover may help target prevention programs. We derive current range distributions for known bat SARSr-CoV hosts and quantify their overlap with human populations. We then use probabilistic risk assessment and data on human-bat contact, human viral seroprevalence, and antibody duration to estimate that a median of 66,280 people (95% CI: 65,351–67,131) are infected with SARSr-CoVs annually in Southeast Asia. These data on the geography and scale of spillover can be used to target surveillance and prevention programs for potential future bat-CoV emergence. Coronaviruses may spill over from bats to humans. This study uses epidemiological data, species distribution models, and probabilistic risk assessment to map overlap among people and SARSr-CoV bat hosts and estimate how many people are infected with bat-origin SARSr-CoVs in Southeast Asia annually.

Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…

McGowan, N. E., N. Roche, T. Aughney, J. Flanagan, P. Nolan, F. Marnell, and N. Reid. 2021. Testing consistency of modelled predictions of the impact of climate change on bats. Climate Change Ecology 2: 100011. https://doi.org/10.1016/j.ecochg.2021.100011

Species Distribution Models (SDMs) are a cornerstone of climate change conservation research but temporal extrapolations into future climate scenarios cannot be verified until later this century. One way of assessing the robustness of projections is to compare their consistency between different mod…

Salinas-Ramos, V. B., L. Ancillotto, L. Cistrone, C. Nastasi, L. Bosso, S. Smeraldo, V. Sánchez Cordero, and D. Russo. 2021. Artificial illumination influences niche segregation in bats. Environmental Pollution 284: 117187. https://doi.org/10.1016/j.envpol.2021.117187

Artificial light at night (ALAN) is a pervasive form of pollution largely affecting wildlife, from individual behaviour to community structure and dynamics. As nocturnal mammals, bats are often adversely affected by ALAN, yet some “light-opportunistic” species exploit it by hunting insects swarming …

Iannella, M., P. D’Alessandro, W. De Simone, and M. Biondi. 2021. Habitat Specificity, Host Plants and Areas of Endemism for the Genera-Group Blepharida s.l. in the Afrotropical Region (Coleoptera, Chrysomelidae, Galerucinae, Alticini). Insects 12: 299. https://doi.org/10.3390/insects12040299

The genus Calotheca Heyden (Chrysomelidae) is mainly distributed in the eastern and southern parts of sub-Saharan Africa, with some extensions northward, while Blepharidina Bechyné occurs in the intertropical zone of Africa, with two subgenera, Blepharidina s. str. and Blepharidina(Afroblepharida) B…

Smeraldo, S., L. Bosso, V. B. Salinas‐Ramos, L. Ancillotto, V. Sánchez‐Cordero, S. Gazaryan, and D. Russo. 2021. Generalists yet different: distributional responses to climate change may vary in opportunistic bat species sharing similar ecological traits. Mammal Review 51: 571–584. https://doi.org/10.1111/mam.12247

Climate change is among the key anthropogenic factors affecting species’ distribution, with important consequences for conservation. However, little is known concerning the consequences of distributional changes on community‐level interactions, and responses by generalist species might have many eco…

Saldaña‐López, A., M. Vilà, F. Lloret, J. Manuel Herrera, and P. González‐Moreno. 2021. Assembly of species’ climatic niches of coastal communities does not shift after invasion Z. Botta‐Dukát [ed.],. Journal of Vegetation Science 32. https://doi.org/10.1111/jvs.12989

Question: Do invasions by invasive plant species with contrasting trait profiles (Arctotheca calendula, Carpobrotus spp., Conyza bonariensis, and Opuntia dillenii) change the climatic niche of coastal plant communities? Location: Atlantic coastal habitats in Huelva (Spain). Methods: We identifi…

Cooper, N., A. L. Bond, J. L. Davis, R. Portela Miguez, L. Tomsett, and K. M. Helgen. 2019. Sex biases in bird and mammal natural history collections. Proceedings of the Royal Society B: Biological Sciences 286: 20192025. https://doi.org/10.1098/rspb.2019.2025

Natural history specimens are widely used across ecology, evolutionary biology and conservation. Although biological sex may influence all of these areas, it is often overlooked in large-scale studies using museum specimens. If collections are biased towards one sex, studies may not be representativ…