Science Enabled by Specimen Data
Grigoropoulou, A., S. A. Hamid, R. Acosta, E. O. Akindele, S. A. Al‐Shami, F. Altermatt, G. Amatulli, et al. 2023. The global EPTO database: Worldwide occurrences of aquatic insects. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13648
Motivation Aquatic insects comprise 64% of freshwater animal diversity and are widely used as bioindicators to assess water quality impairment and freshwater ecosystem health, as well as to test ecological hypotheses. Despite their importance, a comprehensive, global database of aquatic insect occurrences for mapping freshwater biodiversity in macroecological studies and applied freshwater research is missing. We aim to fill this gap and present the Global EPTO Database, which includes worldwide geo-referenced aquatic insect occurrence records for four major taxa groups: Ephemeroptera, Plecoptera, Trichoptera and Odonata (EPTO). Main type of variables contained A total of 8,368,467 occurrence records globally, of which 8,319,689 (99%) are publicly available. The records are attributed to the corresponding drainage basin and sub-catchment based on the Hydrography90m dataset and are accompanied by the elevation value, the freshwater ecoregion and the protection status of their location. Spatial location and grain The database covers the global extent, with 86% of the observation records having coordinates with at least four decimal digits (11.1 m precision at the equator) in the World Geodetic System 1984 (WGS84) coordinate reference system. Time period and grain Sampling years span from 1951 to 2021. Ninety-nine percent of the records have information on the year of the observation, 95% on the year and month, while 94% have a complete date. In the case of seven sub-datasets, exact dates can be retrieved upon communication with the data contributors. Major taxa and level of measurement Ephemeroptera, Plecoptera, Trichoptera and Odonata, standardized at the genus taxonomic level. We provide species names for 7,727,980 (93%) records without further taxonomic verification. Software format The entire tab-separated value (.csv) database can be downloaded and visualized at https://glowabio.org/project/epto_database/. Fifty individual datasets are also available at https://fred.igb-berlin.de, while six datasets have restricted access. For the latter, we share metadata and the contact details of the authors.
Mukherjee, T., L. K. Sharma, M. Thakur, D. Banerjee, and K. Chandra. 2023. Whether curse or blessing: A counterintuitive perspective on global pest thrips infestation under climatic change with implications to agricultural economics. Science of The Total Environment: 161349. https://doi.org/10.1016/j.scitotenv.2022.161349
The improvement and application of pest models to predict yield losses is still a challenge for the scientific community. However, pest models were targeted chiefly towards scheduling scouting or pesticide applications to deal with pest infestation. Thysanoptera (thrips) significantly impact the productivity of many economically important crops worldwide. Until now, no comprehensive study is available on the global distribution of pest thrips, as well as on the extent of cropland vulnerability worldwide. Further, nothing is known about the climate change impacts on these insects. Thus the present study was designed to map the global distribution and quantify the extent of cropland vulnerability in the present and future climate scenarios using data of identified pest thrips within the genus, i.e., Thrips, Frankliniella, and Scirtothrips. Our found significant niche contraction under the climate change scenarios and thrips may reside primarily in their thermal tolerance thresholds. About 3,98,160 km2 of cropland globally was found to be affected in the present scenario. However, it may significantly reduce to 5530 Km2 by 2050 and 1990 km2 by 2070. Further, the thrips distribution mostly getting restricted to Eastern North America, the North-western of the Indian sub-continent, and the north of Europe. Among all realms, thrips may lose ground in the Indo-Malayan realm at the most and get restricted to only 27 out of 825 terrestrial ecoregions. The agrarian communities of the infested regions may get benefit if these pests get wiped out, but on the contrary, we may lose species diversity. Moreover, the vacated niche may attract other invasive species, which may seriously impact the species composition and agricultural productivity. The present study findings can be used in making informed decisions about prioritizing future economic and research investments on the thrips in light of anticipated climate change impacts.
Belitz, M. W., V. Barve, J. R. Doby, M. M. Hantak, E. A. Larsen, D. Li, J. A. Oswald, et al. 2021. Climate drivers of adult insect activity are conditioned by life history traits C. Scherber [ed.],. Ecology Letters 24: 2687–2699. https://doi.org/10.1111/ele.13889
Insect phenological lability is key for determining which species will adapt under environmental change. However, little is known about when adult insect activity terminates and overall activity duration. We used community‐science and museum specimen data to investigate the effects of climate and urbanisation on timing of adult insect activity for 101 species varying in life history traits. We found detritivores and species with aquatic larval stages extend activity periods most rapidly in response to increasing regional temperature. Conversely, species with subterranean larval stages have relatively constant durations regardless of regional temperature. Species extended their period of adult activity similarly in warmer conditions regardless of voltinism classification. Longer adult durations may represent a general response to warming, but voltinism data in subtropical environments are likely underreported. This effort provides a framework to address the drivers of adult insect phenology at continental scales and a basis for predicting species response to environmental change.
Schneider, K., D. Makowski, and W. van der Werf. 2021. Predicting hotspots for invasive species introduction in Europe. Environmental Research Letters 16: 114026. https://doi.org/10.1088/1748-9326/ac2f19
Plant pest invasions cost billions of Euros each year in Europe. Prediction of likely places of pest introduction could greatly help focus efforts on prevention and control and thus reduce societal costs of pest invasions. Here, we test whether generic data-driven risk maps of pest introduction, val…
Busch, A. K., B. E. Wham, and J. F. Tooker. 2021. Life History, Biology, and Distribution of Pterostichus melanarius (Coleoptera: Carabidae) in North America J. Schmidt [ed.],. Environmental Entomology 50: 1257–1266. https://doi.org/10.1093/ee/nvab090
Pterostichus melanarius (Illiger, 1798) is a Palearctic generalist predator native to Europe. It was unintentionally introduced to North America at least twice in the mid 1920s and has since become widespread in Canada and the United States. Although P. melanarius is a valuable natural enemy in many…
Orr, M. C., A. C. Hughes, D. Chesters, J. Pickering, C.-D. Zhu, and J. S. Ascher. 2021. Global Patterns and Drivers of Bee Distribution. Current Biology 31: 451-458.e4. https://doi.org/10.1016/j.cub.2020.10.053
Insects are the focus of many recent studies suggesting population declines, but even invaluable pollination service providers such as bees lack a modern distributional synthesis. Here, we combine a uniquely comprehensive checklist of bee species distributions and >5,800,000 public bee occurrence re…
Fletcher, T. L., A. Z. Csank, and A. P. Ballantyne. 2019. Identifying bias in cold season temperature reconstructions by beetle mutual climatic range methods in the Pliocene Canadian High Arctic. Palaeogeography, Palaeoclimatology, Palaeoecology 514: 672–676. https://doi.org/10.1016/j.palaeo.2018.11.025
Well-preserved beetle elytra from the fossil and subfossil record are used by palaeoclimatologists to estimate past temperatures. Beetle-derived estimates of temperature across the Pliocene Arctic are consistently lower than those derived from other palaeoclimate proxies. Here we test if that patter…
Grünig, M., P. Calanca, D. Mazzi, and L. Pellissier. 2020. Inflection point in climatic suitability of insect pest species in Europe suggests non‐linear responses to climate change. Global Change Biology 26: 6338–6349. https://doi.org/10.1111/gcb.15313
Climate change and globalization affect the suitable conditions for agricultural crops and insect pests, threatening future food security. It remains unknown whether shifts in species’ climatic suitability will be linear or rather non‐linear, with crop exposure to pests suddenly increasing when a cr…
Zigler, K., M. Niemiller, C. Stephen, B. Ayala, M. Milne, N. Gladstone, A. Engel, et al. 2020. Biodiversity from caves and other sub-terranean habitats of Georgia, USA. Journal of Cave and Karst Studies 82: 125–167. https://doi.org/10.4311/2019LSC0125
We provide an annotated checklist of species recorded from caves and other subterranean habitats in the state of Georgia, USA. We report 281 species (228 invertebrates and 53 vertebrates), including 51 troglobionts (cave-obligate species), from more than 150 sites (caves, springs, and wells). Endemi…