Science Enabled by Specimen Data

Novoa, A., H. Hirsch, M. L. Castillo, S. Canavan, L. González, D. M. Richardson, P. Pyšek, et al. 2023. Genetic and morphological insights into the Carpobrotus hybrid complex around the world. NeoBiota 89: 135–160. https://doi.org/10.3897/neobiota.89.109164

The genus Carpobrotus N.E.Br. comprises between 12 and 25 species, most of which are native to South Africa. Some Carpobrotus species are considered among the most damaging invasive species in coastal dune systems worldwide. In their introduced areas, these species represent a serious threat to native species and significantly impact soil conditions and geochemical processes. Despite being well studied, the taxonomy of Carpobrotus remains problematic, as the genus comprises a complex of species that hybridize easily and are difficult to distinguish from each other. To explore the population genetic structure of invasive Carpobrotus species (i.e., C. acinaciformis and C. edulis) across a significant part of their native and non-native ranges, we sampled 40 populations across Argentina, Italy, New Zealand, Portugal, South Africa, Spain, and the USA. We developed taxon-specific microsatellite markers using a Next Generation Sequencing approach to analyze the population genetic structure and incidence of hybridization in native and non-native regions. We identified three genetically distinct clusters, which are present in both the native and non-native regions. Based on a set of selected morphological characteristics, we found no clear features to identify taxa morphologically. Our results suggest that the most probable sources of global introductions of Carpobrotus species are the Western Cape region of South Africa and the coastline of California. We suggest that management actions targeting Carpobrotus invasions globally should focus on preventing additional introductions from the east coast of South Africa, and on searching for prospective biocontrol agents in the Western Cape region of South Africa.

Rocha, J., P. J. Nunes, A. Pinto, L. Fenina, A. L. Afonso, A. R. Seixas, R. Cruz, et al. 2024. Ecological adaptation of Australian Myrtaceae through the leaf waxes analysis: Corymbia citriodora, Eucalyptus gunnii, and Eucalyptus globulus. Flora 310: 152435. https://doi.org/10.1016/j.flora.2023.152435

Seeking to get insight into the close relationship between plant waxes and the climatic conditions of plants’ original biomes, the leaves of three Myrtaceae from the eastern Australian-Tasmanian region (Corymbia citriodora (Hook.) K.D.Hill & L.A.S.Johnson (lemon-scented gum), Eucalyptus gunnii Hook. (cider gum), and Eucalyptus globulus Labill. (blue gum)) were selected. The present study relied on the analysis of juvenile leaf samples of the three species collected at the Botanical Garden of the University of Trás-os-Montes e Alto Douro (Portugal) during the driest and warmest period of the year (July), to ensure the same environmental conditions as the Australian species from December to February, for cider gum and blue gum, and from June to September, for lemon-scented gum. Both surfaces of the leaves of the three Myrtaceae species exhibit superhydrophobic behavior. They are covered with wax tubules, but these are thicker and the surface is smoother in the case of cider gum. From the chemical standpoint, the leaf waxes of the three species revealed a prevalence of β-diketones and sterols over alcohols, alkanes, and esters. The relative ketone/sterol concentration ratio demonstrated an environmental dynamic variation with climate, i.e., with the ombrothermic regimes. The highest concentration of β-diketone and the lowest concentration of sterols was observed for species from dryer conditions (lemon-scented gum), whereas the reverse trend was found for species from wetter conditions (cider gum and blue gum).The present work strongly suggests that the chemical composition of leaf waxes, rather than wettability, seems to be directly correlated with environmental variability at the species’ natural site. The methodology proposed here opens exciting new prospects for the investigation of the environmental dynamics of terrestrial plants.

Zhang, H., W. Guo, and W. Wang. 2023. The dimensionality reductions of environmental variables have a significant effect on the performance of species distribution models. Ecology and Evolution 13. https://doi.org/10.1002/ece3.10747

How to effectively obtain species‐related low‐dimensional data from massive environmental variables has become an urgent problem for species distribution models (SDMs). In this study, we will explore whether dimensionality reduction on environmental variables can improve the predictive performance of SDMs. We first used two linear (i.e., principal component analysis (PCA) and independent components analysis) and two nonlinear (i.e., kernel principal component analysis (KPCA) and uniform manifold approximation and projection) dimensionality reduction techniques (DRTs) to reduce the dimensionality of high‐dimensional environmental data. Then, we established five SDMs based on the environmental variables of dimensionality reduction for 23 real plant species and nine virtual species, and compared the predictive performance of those with the SDMs based on the selected environmental variables through Pearson's correlation coefficient (PCC). In addition, we studied the effects of DRTs, model complexity, and sample size on the predictive performance of SDMs. The predictive performance of SDMs under DRTs other than KPCA is better than using PCC. And the predictive performance of SDMs using linear DRTs is better than using nonlinear DRTs. In addition, using DRTs to deal with environmental variables has no less impact on the predictive performance of SDMs than model complexity and sample size. When the model complexity is at the complex level, PCA can improve the predictive performance of SDMs the most by 2.55% compared with PCC. At the middle level of sample size, the PCA improved the predictive performance of SDMs by 2.68% compared with the PCC. Our study demonstrates that DRTs have a significant effect on the predictive performance of SDMs. Specifically, linear DRTs, especially PCA, are more effective at improving model predictive performance under relatively complex model complexity or large sample sizes.

Issaly, E. A., M. C. Baranzelli, N. Rocamundi, A. M. Ferreiro, L. A. Johnson, A. N. Sérsic, and V. Paiaro. 2023. Too much water under the bridge: unraveling the worldwide invasion of the tree tobacco through genetic and ecological approaches. Biological Invasions. https://doi.org/10.1007/s10530-023-03189-y

Understanding how, and from where, invasive species were introduced is critical for revealing the invasive mechanism, explaining the invasion success, and providing crucial insights for effective management. Here, we combined a phylogeographic approach with ecological niche modeling comparisons to elucidate the introduction mode and source of Nicotiana glauca , a native South American species that is now invasive worldwide. We tested three different scenarios based on the invasion source—random native, restricted native, and bridgehead invasive—considering genetic diversity and climatic niche comparisons among native and invaded areas. We found three genetic lineages geographically and climatically differentiated within the native range. Only one of these genetic groups contained the invasive haplotypes, but showed no climatic niche overlap with any invaded area. Conversely, one invaded area located in western South America, with more genetic diversity than other invaded areas but less than the native range, showed climatic niche overlap with almost all other invaded areas worldwide. These findings indicate that N. glauca first likely invaded the southernmost areas beyond its native range, forming a bridgehead invasive source, from which the species subsequently invaded other regions around the world. Invasiveness would have been fostered by changes in the environmental preferences of the species in the bridgehead area, towards drier, colder and less seasonal climates, becoming the actual source of invasion to areas climatically similar throughout the world. The fine scale resolution analyses combining genetic and climatic approaches within the native range were essential to illuminating the introduction scenario of this invasive species.

Mbobo, T., D. Richardson, and J. Wilson. 2023. Syzygium australe (J.C.Wendl. ex Link) B. Hyland (Myrtaceae) in South Africa: current distribution and invasion potential. BioInvasions Records 12: 637–648. https://doi.org/10.3391/bir.2023.12.3.01

Syzygium australe (Australian brush-cherry; the names Eugenia australis and Syzygium paniculatum have been misapplied to this species in some regions) is native to Australia. It has been introduced and used as an ornamental plant in several regions outside its native range and is invasive in Hawaii and New Zealand. The species was first recorded in South Africa in 1968 and has become a popular and widely traded and planted ornamental species. The first reports of naturalisation in the country appeared in the first decade of the 21st century; the species was subsequently flagged as a priority for investigation and potential regulation as an invasive species. In this paper we mapped the current distribution of S. australe in South Africa, determined its introduction status, and modelled its potential distribution. We also investigated whether cultivated plants are producing fertile seeds and compared such seeds with those produced by plants growing outside cultivation. We recorded S. australe at 268 sites across the country, clustered primarily in the Western Cape province. Naturalised populations have established at three sites, all in the Western Cape. Surveys of these established populations revealed ~ 4000 plants covering an area of ~ 7 ha (representing ~ 2 ha condensed canopy area). These populations were flourishing in riparian habitats in urban areas. Species distribution models suggest that S. australe has the potential to expand its current range in South Africa, primarily in coastal regions. Seeds of both cultivated and naturalised plants showed similar high levels of germinability (both 100%). Building on these findings, we conducted a risk analysis using the Risk Analysis of Alien Taxa Framework, and found S. australe to be of high invasion risk in South Africa. We recommend that all populations outside cultivation be controlled, and that propagation and trade be prohibited. However, except where they occur near riparian habitats, garden plantings do not need to be prioritised for immediate control, and can rather be phased out over time.

ter Huurne, M. B., L. J. Potgieter, C. Botella, and D. M. Richardson. 2023. Melaleuca (Myrtaceae): Biogeography of an important genus of trees and shrubs in a changing world. South African Journal of Botany 162: 230–244. https://doi.org/10.1016/j.sajb.2023.08.052

The number of naturalised and invasive woody plant species has increased rapidly in recent decades. Despite the increasing interest in tree and shrub invasions, little is known about the invasion ecology of most species. This paper explores the global movement of species in the genus Melaleuca (Myrtaceae; here including the genus Callistemon). We assess the global introduction history, distribution and biogeographic status of the genus. Various global species occurrence databases, citizen science (iNaturalist), and the literature were used.Seventy-two species [out of 386 Melaleuca species; 19%] have been introduced to at least 125 regions outside their native range. The main regions of global Melaleuca introductions are Southeast Asia, the southern parts of North America, south-eastern South America, southern Africa and Europe. The earliest record of a Melaleuca species outside of the native range of the genus is 1789. First records of Melaleuca species outside their native range were most commonly recorded in the 1960s, with records from all over the world. The main reasons for Melaleuca introductions were for use in the tea tree (pharmaceutical value) and ornamental horticulture industries. Melaleuca introductions, naturalizations and invasions are recent compared to many other woody plant taxa. Experiences in Florida and South Africa highlight the potential of Melaleuca species to spread rapidly and have significant ecological impacts. It is likely that the accumulating invasion debt will result in further naturalization and invasion of Melaleuca species in the future.

Rodríguez-Merino, A. 2023. Identifying and Managing Areas under Threat in the Iberian Peninsula: An Invasion Risk Atlas for Non-Native Aquatic Plant Species as a Potential Tool. Plants 12: 3069. https://doi.org/10.3390/plants12173069

Predicting the likelihood that non-native species will be introduced into new areas remains one of conservation’s greatest challenges and, consequently, it is necessary to adopt adequate management measures to mitigate the effects of future biological invasions. At present, not much information is available on the areas in which non-native aquatic plant species could establish themselves in the Iberian Peninsula. Species distribution models were used to predict the potential invasion risk of (1) non-native aquatic plant species already established in the peninsula (32 species) and (2) those with the potential to invade the peninsula (40 species). The results revealed that the Iberian Peninsula contains a number of areas capable of hosting non-native aquatic plant species. Areas under anthropogenic pressure are at the greatest risk of invasion, and the variable most related to invasion risk is temperature. The results of this work were used to create the Invasion Risk Atlas for Alien Aquatic Plants in the Iberian Peninsula, a novel online resource that provides information about the potential distribution of non-native aquatic plant species. The atlas and this article are intended to serve as reference tools for the development of public policies, management regimes, and control strategies aimed at the prevention, mitigation, and eradication of non-native aquatic plant species.

McCulloch-Jones, E. J., T. Kraaij, N. Crouch, and K. T. Faulkner. 2023. Assessing the invasion risk of traded alien ferns using species distribution models. NeoBiota 87: 161–189. https://doi.org/10.3897/neobiota.87.101104

Risk analysis plays a crucial role in regulating and managing alien and invasive species but can be time-consuming and costly. Alternatively, combining invasion and impact history with species distribution models offers a cost-effective and time-efficient approach to assess invasion risk and identify species for which a comprehensive risk analysis should take precedence. We conducted such an assessment for six traded alien fern species, determining their invasion risk in countries where they are traded. Four of the species (Dicksonia antarctica, Dryopteris erythrosora, Lygodium japonicum, and Phlebodium aureum) showed limited global distributions, while Adiantum raddianum and Sphaeropteris cooperi had broader distributions. A. raddianum, however, was the only species found to pose a high invasion risk in two known trade countries – the USA and Australia – and requires a complete risk analysis to determine the appropriate regulatory responses. Dicksonia antarctica, Phlebodium aureum (for New Zealand), and Dryopteris erythrosora (for the USA) posed a medium risk of invasion due to the lack of evidence of impacts, and a complete risk analysis is thus deemed less crucial for these species in these countries. For other species, suitable environments were not predicted in the countries where they are traded, thus the risk of invasion is low, and a complete risk analysis is not required. For species in countries where suitable environments are predicted but no trade information or presence data are available, risk assessments are recommended to better determine the risk posed. Despite the relatively limited potential global distribution of the studied ferns relative to other major plant invaders (e.g., Pinus spp. and Acacia spp.), their history of invasion, documented impacts in pristine environments, and high propagule pressure from trade warrants concern, possibly necessitating legislative and regulatory measures in environmentally suitable regions.

Borges, C. E., R. Von dos Santos Veloso, C. A. da Conceição, D. S. Mendes, N. Y. Ramirez-Cabral, F. Shabani, M. Shafapourtehrany, et al. 2023. Forecasting Brassica napus production under climate change with a mechanistic species distribution model. Scientific Reports 13. https://doi.org/10.1038/s41598-023-38910-3

Brassica napus , a versatile crop with significant socioeconomic importance, serves as a valuable source of nutrition for humans and animals while also being utilized in biodiesel production. The expansion potential of B. napus is profoundly influenced by climatic variations, yet there remains a scarcity of studies investigating the correlation between climatic factors and its distribution. This research employs CLIMEX to identify the current and future ecological niches of B. napus under the RCP 8.5 emission scenario, utilizing the Access 1.0 and CNRM-CM5 models for the time frame of 2040–2059. Additionally, a sensitivity analysis of parameters was conducted to determine the primary climatic factors affecting B. napus distribution and model responsiveness. The simulated outcomes demonstrate a satisfactory alignment with the known current distribution of B. napus , with 98% of occurrence records classified as having medium to high climatic suitability. However, the species displays high sensitivity to thermal parameters, thereby suggesting that temperature increases could trigger shifts in suitable and unsuitable areas for B. napus , impacting regions such as Canada, China, Brazil, and the United States.

Geier, C., J. M. Bouchal, S. Ulrich, D. Uhl, T. Wappler, S. Wedmann, R. Zetter, et al. 2023. Potential pollinators and paleoecological aspects of Eocene Ludwigia (Onagraceae) from Eckfeld, Germany. Palaeoworld. https://doi.org/10.1016/j.palwor.2023.07.003

Paleogene flower-insect interactions and paleo-pollination processes are, in general, poorly understood and fossil evidence for such floral and faunal interactions are rarely reported. To shed light on angiosperm flower-insect interactions, we investigated several hundred fossil flowers and insects from the middle Eocene Fossil Lagerstätte of Eckfeld, Germany. During our work, we discovered a unique fossil Ludwigia flower (bud) with in situ pollen. The ecological preferences (climate, biome, habitat, etc.) of extant Ludwigia and the paleoecological configurations of the fossil plant assemblage support the taxonomic affiliation of the flower bud and an Eocene presence of Ludwigia in the vicinity of the former Lake Eckfeld. Today’s Ludwigia are mostly pollinated by Hymenoptera (bees). Therefore, we screened all currently known hymenopteran fossils from Eckfeld but found no Ludwigia pollen adhering to any of the specimens. On the contrary, we discovered Ludwigia pollen adhering to two different groups of Coleoptera (beetles). Our study suggests that during the Eocene of Europe, Ludwigia flowers were visited and probably pollinated by beetles and over time there was a shift in primary flower visitors/pollinators, from beetles to bees, sometime during the late Paleogene to Neogene.