Science Enabled by Specimen Data
Jinga, P., A. Mureva, and T. Manyangadze. 2023. Mopane (Colophospermum mopane): A potential winner under climate change in southern Africa. Austral Ecology. https://doi.org/10.1111/aec.13426
Distribution and abundance under climate change of particularly non‐timber forest product tree species is vital since they sustain many livelihoods, especially in rural sub‐Saharan Africa. The aim of the study was to determine the current and future natural range of mopane (Colophospermum mopane (J. Kirk ex Benth.) J. Léonard, Fabaceae), a dominant tree species in mopane woodlands of southern Africa. An ensemble model was built in ‘biomod2’ from eight algorithms and used to estimate the current and future distribution. Seven bioclimatic variables and 269 occurrence records were used to calibrate individual models that were later combined into an ensemble model. The ensemble model was projected to two time periods, 2041–2060 and 2081–2100, under two shared socio‐economic pathways (SSPs), SSP2‐4.5 and SSP5‐8.5, and three general circulation models (GCMs). The ensemble model showed high performance (KAPPA = 0.770, ROC = 0.961, TSS = 0.792, ACCURACY = 0.900). A map of the current distribution shows occurrence predominantly in low‐lying areas, including the Zambezi, Save and Limpopo valleys, Okavango and Cuvelai basins, and in southern and central Mozambique. Projection maps show expansion under all SSPs, GCMs and time periods. Averaged across GCMs in 2041–2060, the range expanded by 22.37% under SSP2‐4.5, and by 19.94% under SSP5‐8.5. In 2081–2100, the range expanded by 20.43% under SSP2‐4.5, and by 27.62% under SSP5‐8.5. Notably, the range expansion was highest under SSP5‐8.5, an SSP that envisages unmitigated greenhouse gas release and the largest mean global temperature increase. It is highly likely that mopane is not directly threatened by climate change. Indirect climate change threats, however, remain uncertain.
Gachambi Mwangi, J., J. Haggar, S. Mohammed, T. Santika, and K. Mustapha Umar. 2023. The ecology, distribution, and anthropogenic threats of multipurpose hemi-parasitic plant Osyris lanceolata. Journal for Nature Conservation 76: 126478. https://doi.org/10.1016/j.jnc.2023.126478
Osyris lanceolata Hochst. & Steud. ex A. DC. is a multipurpose plant with high socioeconomic and cultural values. It is endangered in the biogeographical region of eastern Africa, but of less concern in other regions where it occurs. The few natural populations remaining in the endangered sites continue to encounter many threats, and this has raised concerns about its long-term sustainability. Yet, existing knowledge about the ecology and distribution of the plant is scarce to inform strategies for the conservation and sustainable management of the species. In this study, we conducted a scoping review of the available literature on current knowledge about the plant. We recapitulated existing knowledge about the abiotic and biotic factors influencing the contemporary distribution of the plant, the anthropogenic threats, and existing conservation efforts. Based on the limited studies we reviewed, we identified that the plant prefers specific habitats (hilly areas and rocky outcrops), frequently parasitizes Fabaceae but can parasitize plants from a wide range of countries, have inadequate ex-situ propagation protocols which present issues for the survival of the species. Overharvesting from the wild driven by demand from regional and global markets poses further threats to the existing natural populations, especially in eastern Africa. A combination of ecological, social, and trade-related conservation measures can be envisioned to help improve the plant’s persistence. These include, but are not limited to, a better understanding of the species ecology to inform conservation planning, monitoring of trade flow and improve transnational environmental laws and cooperation among countries to prevent species smuggling.
Tataridas, A., M. Moreira, L. Frazão, P. Kanatas, N. Ota, and I. Travlos. 2023. Biology of Invasive Plants 5. Solanum elaeagnifolium Cav. Invasive Plant Science and Management: 1–53. https://doi.org/10.1017/inp.2023.21
(no abstract available)
FEDONIUK, T. P., and О. V. SKYDAN. 2023. INCORPORATING GEOGRAPHIC INFORMATION TECHNOLOGIES INTO A FRAMEWORK FOR BIOLOGICAL DIVERSITY CONSERVATION AND PREVENTING BIOLOGICAL THREATS TO LANDSCAPES. Kosmìčna nauka ì tehnologìâ 29: 10–21. https://doi.org/10.15407/knit2023.02.010
As the long-term sustainability of both natural and artificial phytocenoses is under serious threat from biological invaders, the global community is working hard to prevent invasions and rapidly eradicate or halt the spread of invasive species. By tracking the actual spread of “invaders” or predicting areas at risk of invasion, geographic information systems (GIS) and remote sensing of the Earth (RSE) can significantly assist the process of ensuring biosecurity at the state level. Research has shown the potential of remote sensing and GIS applications for invasive species mapping and modeling, even though it is currently restricted to a small number of taxa. This article gives examples of how GIS and RSE can be used to track invasive species like Utricularia australis R. br. and Lemna aequinoctialis Welw. To describe the distribution of species, current Internet databases of species distribution and the author’s own research were used. It also talks about promising ways to find and track the spread of invasive species, like using NDVI indices, chlorophyll and xanthophyll content to find changes in regional biodiversity, some problems with finding changes in biodiversity in agricultural landscapes, and mapping invasion risk. The study also demonstrates how GIS technology may be used to identify agricultural landscape biodiversity using radiometric space data from Sentinel 1, followed by a verification of the findings. The prospects of spatial, spectral, and temporal analysis of images are determined, as they make it possible to outline the boundaries of ecosystems, biometric characteristics of species, characteristics of their current and potential areas of distribution, etc.
Geier, C., J. M. Bouchal, S. Ulrich, D. Uhl, T. Wappler, S. Wedmann, R. Zetter, et al. 2023. Potential pollinators and paleoecological aspects of Eocene Ludwigia (Onagraceae) from Eckfeld, Germany. Palaeoworld. https://doi.org/10.1016/j.palwor.2023.07.003
Paleogene flower-insect interactions and paleo-pollination processes are, in general, poorly understood and fossil evidence for such floral and faunal interactions are rarely reported. To shed light on angiosperm flower-insect interactions, we investigated several hundred fossil flowers and insects from the middle Eocene Fossil Lagerstätte of Eckfeld, Germany. During our work, we discovered a unique fossil Ludwigia flower (bud) with in situ pollen. The ecological preferences (climate, biome, habitat, etc.) of extant Ludwigia and the paleoecological configurations of the fossil plant assemblage support the taxonomic affiliation of the flower bud and an Eocene presence of Ludwigia in the vicinity of the former Lake Eckfeld. Today’s Ludwigia are mostly pollinated by Hymenoptera (bees). Therefore, we screened all currently known hymenopteran fossils from Eckfeld but found no Ludwigia pollen adhering to any of the specimens. On the contrary, we discovered Ludwigia pollen adhering to two different groups of Coleoptera (beetles). Our study suggests that during the Eocene of Europe, Ludwigia flowers were visited and probably pollinated by beetles and over time there was a shift in primary flower visitors/pollinators, from beetles to bees, sometime during the late Paleogene to Neogene.
Maurin, O., A. Anest, F. Forest, I. Turner, R. L. Barrett, R. C. Cowan, L. Wang, et al. 2023. Drift in the tropics: Phylogenetics and biogeographical patterns in Combretaceae. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13737
Aim The aim of this study was to further advance our understanding of the species-rich, and ecologically important angiosperm family Combretaceae to provide new insights into their evolutionary history. We assessed phylogenetic relationships in the family using target capture data and produced a dated phylogenetic tree to assess fruit dispersal modes and patterns of distribution. Location Tropical and subtropical regions. Time Period Cretaceous to present. Major Taxa Studied Family Combretaceae is a member of the rosid clade and comprises 10 genera and more than 500 species, predominantly assigned to genera Combretum and Terminalia, and occurring on all continents and in a wide range of ecosystems. Methods We use a target capture approach and the Angiosperms353 universal probes to reconstruct a robust dated phylogenetic tree for the family. This phylogenetic framework, combined with seed dispersal traits, biome data and biogeographic ranges, allows the reconstruction of the biogeographical history of the group. Results Ancestral range reconstructions suggest a Gondwanan origin (Africa/South America), with several intercontinental dispersals within the family and few transitions between biomes. Relative abundance of fruit dispersal types differed by both continent and biome. However, intercontinental colonizations were only significantly enhanced by water dispersal (drift fruit), and there was no evidence that seed dispersal modes influenced biome shifts. Main Conclusions Our analysis reveals a paradox as drift fruit greatly enhanced dispersal distances at intercontinental scale but did not affect the strong biome conservatism observed.
Benson, C. W., M. R. Sheltra, P. J. Maughan, E. N. Jellen, M. D. Robbins, B. S. Bushman, E. L. Patterson, et al. 2023. Homoeologous evolution of the allotetraploid genome of Poa annua L. BMC Genomics 24. https://doi.org/10.1186/s12864-023-09456-5
Background Poa annua (annual bluegrass) is an allotetraploid turfgrass, an agronomically significant weed, and one of the most widely dispersed plant species on earth. Here, we report the chromosome-scale genome assemblies of P. annua’s diploid progenitors, P. infirma and P. supina, and use multi-omic analyses spanning all three species to better understand P. annua’s evolutionary novelty. Results We find that the diploids diverged from their common ancestor 5.5 – 6.3 million years ago and hybridized to form P. annua ≤ 50,000 years ago. The diploid genomes are similar in chromosome structure and most notably distinguished by the divergent evolutionary histories of their transposable elements, leading to a 1.7 × difference in genome size. In allotetraploid P. annua, we find biased movement of retrotransposons from the larger (A) subgenome to the smaller (B) subgenome. We show that P. annua’s B subgenome is preferentially accumulating genes and that its genes are more highly expressed. Whole-genome resequencing of several additional P. annua accessions revealed large-scale chromosomal rearrangements characterized by extensive TE-downsizing and evidence to support the Genome Balance Hypothesis. Conclusions The divergent evolutions of the diploid progenitors played a central role in conferring onto P. annua its remarkable phenotypic plasticity. We find that plant genes (guided by selection and drift) and transposable elements (mostly guided by host immunity) each respond to polyploidy in unique ways and that P. annua uses whole-genome duplication to purge highly parasitized heterochromatic sequences. The findings and genomic resources presented here will enable the development of homoeolog-specific markers for accelerated weed science and turfgrass breeding .
Cousins-Westerberg, R., N. Dakin, L. Schat, G. Kadereit, and A. M. Humphreys. 2023. Evolution of cold tolerance in the highly stress-tolerant samphires and relatives (Salicornieae: Amaranthaceae). Botanical Journal of the Linnean Society. https://doi.org/10.1093/botlinnean/boad009
Low temperature constitutes one of the main barriers to plant distributions, confining many clades to their ancestrally tropical biome. However, recent evidence suggests that transitions from tropical to temperate biomes may be more frequent than previously thought. Here, we study the evolution of cold and frost tolerance in the globally distributed and highly stress-tolerant Salicornieae (Salicornioideae, Amaranthaceae s.l.). We first generate a phylogenetic tree comprising almost all known species (85-90%), using newly generated (n = 106) and published nuclear-ribosomal and plastid sequences. Next, we use geographical occurrence data to document in which clades and geographical regions cold-tolerant species occur and reconstruct how cold tolerance evolved. Finally, we test for correlated evolution between frost tolerance and the annual life form. We find that frost tolerance has evolved independently in up to four Northern Hemisphere lineages but that annuals are no more likely to evolve frost tolerance than perennials, indicating the presence of different strategies for adapting to cold environments. Our findings add to mounting evidence for multiple independent out-of-the-tropics transitions among close relatives of flowering plants and raise new questions about the ecological and physiological mechanism(s) of adaptation to low temperatures in Salicornieae.
Richard-Bollans, A., C. Aitken, A. Antonelli, C. Bitencourt, D. Goyder, E. Lucas, I. Ondo, et al. 2023. Machine learning enhances prediction of plants as potential sources of antimalarials. Frontiers in Plant Science 14. https://doi.org/10.3389/fpls.2023.1173328
Plants are a rich source of bioactive compounds and a number of plant-derived antiplasmodial compounds have been developed into pharmaceutical drugs for the prevention and treatment of malaria, a major public health challenge. However, identifying plants with antiplasmodial potential can be time-consuming and costly. One approach for selecting plants to investigate is based on ethnobotanical knowledge which, though having provided some major successes, is restricted to a relatively small group of plant species. Machine learning, incorporating ethnobotanical and plant trait data, provides a promising approach to improve the identification of antiplasmodial plants and accelerate the search for new plant-derived antiplasmodial compounds. In this paper we present a novel dataset on antiplasmodial activity for three flowering plant families – Apocynaceae, Loganiaceae and Rubiaceae (together comprising c. 21,100 species) – and demonstrate the ability of machine learning algorithms to predict the antiplasmodial potential of plant species. We evaluate the predictive capability of a variety of algorithms – Support Vector Machines, Logistic Regression, Gradient Boosted Trees and Bayesian Neural Networks – and compare these to two ethnobotanical selection approaches – based on usage as an antimalarial and general usage as a medicine. We evaluate the approaches using the given data and when the given samples are reweighted to correct for sampling biases. In both evaluation settings each of the machine learning models have a higher precision than the ethnobotanical approaches. In the bias-corrected scenario, the Support Vector classifier performs best – attaining a mean precision of 0.67 compared to the best performing ethnobotanical approach with a mean precision of 0.46. We also use the bias correction method and the Support Vector classifier to estimate the potential of plants to provide novel antiplasmodial compounds. We estimate that 7677 species in Apocynaceae, Loganiaceae and Rubiaceae warrant further investigation and that at least 1300 active antiplasmodial species are highly unlikely to be investigated by conventional approaches. While traditional and Indigenous knowledge remains vital to our understanding of people-plant relationships and an invaluable source of information, these results indicate a vast and relatively untapped source in the search for new plant-derived antiplasmodial compounds.
Clemente, K. J. E., and M. S. Thomsen. 2023. High temperature frequently increases facilitation between aquatic foundation species: a global meta‐analysis of interaction experiments between angiosperms, seaweeds, and bivalves. Journal of Ecology. https://doi.org/10.1111/1365-2745.14101
Many studies have quantified ecological impacts of individual foundation species (FS). However, emerging data suggest that FS often co‐occur, potentially inhibiting or facilitating one another, thereby causing indirect, cascading effects on surrounding communities. Furthermore, global warming is accelerating, but little is known about how interactions between co‐occurring FS vary with temperature.Shallow aquatic sedimentary systems are often dominated by three types of FS: slower‐growing clonal angiosperms, faster‐growing solitary seaweeds, and shell‐forming filter‐ and deposit‐feeding bivalves. Here, we tested the impacts of one FS on another by analyzing manipulative interaction experiments from 148 papers with a global meta‐analysis.We calculated 1,942 (non‐independent) Hedges’ g effect sizes, from 11,652 extracted values over performance responses, such as abundances, growths or survival of FS, and their associated standard deviations and replication levels. Standard aggregation procedures generated 511 independent Hedges’ g that was classified into six types of reciprocal impacts between FS.We found that (i) seaweeds had consistent negative impacts on angiosperms across performance responses, organismal sizes, experimental approaches, and ecosystem types; (ii) angiosperms and bivalves generally had positive impacts on each other (e.g., positive effects of angiosperms on bivalves were consistent across organismal sizes and experimental approaches, but angiosperm effect on bivalve growth and bivalve effect on angiosperm abundance were not significant); (iii) bivalves positively affected seaweeds (particularly on growth responses); (iv) there were generally no net effects of seaweeds on bivalves (except for positive effect on growth) or angiosperms on seaweeds (except for positive effect on ‘other processes’); and (v) bivalve interactions with other FS were typically more positive at higher temperatures, but angiosperm‐seaweed interactions were not moderated by temperature.Synthesis: Despite variations in experimental and spatiotemporal conditions, the stronger positive interactions at higher temperatures suggest that facilitation, particularly involving bivalves, may become more important in a future warmer world. Importantly, addressing research gaps, such as the scarcity of FS interaction experiments from tropical and freshwater systems and for less studied species, as well as testing for density‐dependent effects, could better inform aquatic ecosystem conservation and restoration efforts and broaden our knowledge of FS interactions in the Anthropocene.