Science Enabled by Specimen Data

DuBose, T. P., V. Catalan, C. E. Moore, V. R. Farallo, A. L. Benson, J. L. Dade, W. A. Hopkins, and M. C. Mims. 2024. Thermal Traits of Anurans Database for the Southeastern United States (TRAD): A Database of Thermal Trait Values for 40 Anuran Species. Ichthyology & Herpetology 112. https://doi.org/10.1643/h2022102

Thermal traits, or how an animal responds to changing temperatures, impacts species persistence and thus biodiversity. Trait databases, as repositories of consolidated, measured organismal attributes, allow researchers to link study species with specific trait values, enabling comparisons within and among species. Trait databases also help lay the groundwork to build mechanistic linkages between organisms and the environment. However, missing or hidden physiological trait data preclude building mechanistic estimates of climate change vulnerability for many species. Thus, physiologically focused trait databases present an opportunity to consolidate data and enable species-specific or multispecies, mechanistic evaluations of climate change vulnerability. Here, we present TRAD: thermal traits of anurans database for the southeastern United States, a database of thermal trait values related to physiological thermoregulation (critical thermal minima and maxima, preferred temperature), behavioral thermoregulation (activity period, retreat emergence temperature, basking temperature, minimum and maximum foraging temperatures), and body mass for 37 anuran species found within the southeastern United States. In total, TRAD contains 858 reported trait values for 37 of 40 species found in the region from 267 peer-reviewed papers, dissertations, or theses and is easily linked with trait data available in ATraiU, an ecological trait database for anurans in the United States. TRAD contains trait values for multiple life stages and a summarization of interspecific adult trait values. Availability of trait data varied widely among traits and species. Estimates of mass were the most common trait values reported, with values available for 32 species. Behavioral trait values comprised 23% of our database, with activity period available for 34 species. We found the most trait values for Cope's Gray Treefrog (Dryophytes chrysoscelis), with at least one trait value for eight traits in the database. Conversely, species in the genus Pseudacris generally had the fewest trait values available. Species with the largest geographic range sizes also had the greatest coverage of data across traits (rho 5 0.75, P , 0.001). TRAD can aid studies of anuran response to changing temperatures, physiological niche space and limitations, and potential drivers of anuran geographic range limits, influencing our understanding of other ecological and evolutionary patterns and processes and enabling multispecies comparisons of potential risk and resilience in the face of climate change.

Minghetti, E., P. M. Dellapé, M. Maestro, and S. I. Montemayor. 2024. Evaluating the climatic suitability of Engytatus passionarius Minghetti et al. (Heteroptera, Miridae) as a biological control agent of the invasive stinking passion flower Passiflora foetida L. in Australia through ecological niche models. Biological Control 191: 105461. https://doi.org/10.1016/j.biocontrol.2024.105461

Passiflora foetida is a climbing vine, native to the Neotropical Region that is causing major economic and ecological damage in Australia, where it is rapidly spreading. Traditional control options, such as cutting, manual uprooting, and herbicide applications are only effective for local management. Currently, the plant bug Engytatus passionarius is the most promising biological control agent. Specificity tests performed in its native range in Argentina suggest it is highly specific to the plant, and it has not been observed in the field associated with other plants. As climate determines the establishment of insects, knowing if the environmental conditions suit their requirements is key to introducing a species in a region. Also, an overlap between the climatic niches of species is an indicator of similar requirements. To explore the possibilities of a successful establishment of E. passionarius in Australia, ecological niche models (ENM) were built for the plant bug and for the vine and their overlap was measured. The ENM projected to Australia recognized suitable environmental conditions for the establishment of E. passionarius in several regions where P. foetida is present, both for current and future scenarios. Moreover, the niche of the plant bug is almost completely overlapped with that of the vine. All the aforementioned evidence seems to indicate that E. passionarius has a good chance to become an effective biological control agent of P. foetida.

Mathur, M., and P. Mathur. 2024. Habitat suitability of Opuntia ficus-indica (L.) MILL. (CACTACEAE): a comparative temporal evaluation using diverse bio-climatic earth system models and ensemble machine learning approach. Environmental Monitoring and Assessment 196. https://doi.org/10.1007/s10661-024-12406-7

A comprehensive evaluation of the habitat suitability across the India was conducted for the introduced species Opuntia ficus-indica . This assessment utilized a newly developed model called BioClimInd, takes into account five Earth System Models (ESMs). These ESMs consider two different emission scenarios known as Representative Concentration Pathways (RCP), specifically RCP 4.5 and RCP 8.5. Additionally, the assessment considered two future time frames: 2040–2079 (60) and 2060–2099 (80). Current study provided the threshold limit of different climatic variables in annual, quarter and monthly time slots like temperature annual range (26–30 °C), mean temperature of the driest quarter (25–28 °C); mean temperature of the coldest month (22–25 °C); minimum temperature of coldest month (13–17 °C); precipitation of the wettest month (250–500 mm); potential evapotranspiration Thronthwaite (1740–1800 mm). Predictive climatic habitat suitability posits that the introduction of this exotic species is deemed unsuitable in the Northern as well as the entirety of the cooler eastern areas of the country. The states of Rajasthan and Gujarat exhibit the highest degree of habitat suitability for this particular species. Niche hypervolumes and climatic variables affecting fundamental and realized niches were also assessed. This study proposes using multi-climatic exploration to evaluate habitats for introduced species to reduce modeling uncertainties.

Rautela, K., A. Kumar, S. K. Rana, A. Jugran, and I. D. Bhatt. 2024. Distribution, Chemical Constituents and Biological Properties of Genus Malaxis. Chemistry & Biodiversity. https://doi.org/10.1002/cbdv.202301830

The genus Malaxis (family Orchidaceae), comprises nearly 183 species available across the globe. The plants of this genus have long been employed in traditional medical practices because of their numerous biological properties, like the treatment of infertility, hemostasis, burning sensation, bleeding diathesis, fever, diarrhea, dysentery, febrifuge, tuberculosis, etc. Various reports highlight their phytochemical composition and biological activities. However, there is a lack of systematic review on the distribution, phytochemistry, and biological properties of this genus. Hence, this study aims to conduct a thorough and critical review of Malaxis species, covering data published from 1965 to 2022 with nearly 90 articles. Also, it examines different bioactive compounds, their chemistry, and pharmacotherapeutics as well as their traditional uses. A total of 191 unique compounds, including the oil constituents were recorded from Malaxis species. The highest active ingredients were obtained from Malaxis acuminata (103) followed by Malaxis muscifera (50) and Malaxis rheedei (33). In conclusion, this review offers an overview of the current state of knowledge on Malaxis species and highlights prospects for future research projects on them. Additionally, it recommends the promotion of domestication studies for rare medicinal orchids like Malaxis and the prompt implementation of conservation measures.

Scarpetta, S. G. 2024. A Palaeogene stem crotaphytid ( Aciprion formosum ) and the phylogenetic affinities of early fossil pleurodontan iguanians. Royal Society Open Science 11. https://doi.org/10.1098/rsos.221139

Pleurodonta is an ancient, diverse clade of iguanian lizard distributed primarily in the Western Hemisphere. Although the clade is a frequent subject of systematic research, phylogenetic resolution among the major pleurodontan clades is elusive. That uncertainty has complicated the interpretations of many fossil pleurodontans. I describe a fossil skull of a pleurodontan lizard from the Palaeogene of Wyoming that was previously allocated to the puzzling taxon Aciprion formosum , and provide an updated morphological matrix for iguanian lizards. Phylogenetic analyses using Bayesian inference demonstrate that the fossil skull is the oldest and first definitive stem member of Crotaphytidae (collared and leopard lizards), establishing the presence of that clade in North America during the Palaeogene. I also discuss new or revised hypotheses for the relationships of several early pleurodontans. In particular, I examine potential evidence for crown-Pleurodonta in the Cretaceous of Mongolia ( Polrussia ), stem Pleurodonta in the Cretaceous of North America ( Magnuviator ) and a stem anole in the Eocene of North America ( Afairiguana ). I suggest that the placement of the fossil crotaphytid is stable to the uncertain phylogeny of Pleurodonta, but recognize the dynamic nature of fossil diagnosis and the potential for updated systematic hypotheses for the other fossils analysed here.

Gherghel, I., and R. A. Martin. 2024. Biotic interactions vary across species’ ranges and are likely conserved through geological time. Journal of Biogeography. https://doi.org/10.1111/jbi.14794

Aim The evolutionary interactions between western spadefoot toads (genus Spea) represent a textbook example of character displacement, facilitated by dietary specialization of one Spea species on fairy shrimp (Anostraca) when all three co‐occur. The aim of this study is to understand the covariation between predator (Spea) and prey (Anostraca) range shifts in response to climate change oscillations, and whether biotic interactions can be used to project species distribution models on different time scales when studying species with dietary specialization. Taxon: Amphibia: Spea spp. and Crustacea: Anostraca.LocationNorth America.MethodsUsing multiple modelling techniques, we first estimated the potential distribution of central and western North American fairy shrimp species (Crustacea: Anostraca) and two western spadefoot toad species (Spea bombifrons and Spea multiplicata). We then created a shrimp species richness map by aggregating individual species estimates. Third, we studied the relationship between the probability of spadefoot toad presence and fairy shrimp species richness during the present and Last Glacial Maximum conditions. Finally, we estimated the strength and direction of the co‐occurrence between spadefoot toads and fairy shrimp sampled at the level of entire predicted range and at the regional level (allopatric and sympatric).ResultsFirst, the same abiotic environmental variables shape spadefoot toad and fairy shrimp species' distributions in central and western North America across time. Second, areas of sympatry of Spea bombifrons and Spea multiplicata correspond with dry conditions and higher shrimp richness. Finally, the spatial patterns of predator–prey co‐occurrence are highly variable across geography, forming a spatial mosaic over the species' ranges.Main ConclusionPredator–prey relationships form a spatial mosaic across geography and species ranges. Including biotic interactions into species distribution estimates for organisms with dietary specialization is highly recommended. Biotic interactions can be projected across different time frames for organisms with dietary specialization as they are likely conserved.

Xiao, S., S. Li, J. Huang, X. Wang, M. Wu, R. Karim, W. Deng, and T. Su. 2024. Influence of climate factors on the global dynamic distribution of Tsuga (Pinaceae). Ecological Indicators 158: 111533. https://doi.org/10.1016/j.ecolind.2023.111533

Throughout the Quaternary period, climate change has significantly influenced plant distribution, particularly affecting species within the genus Tsuga (Endl.) Carrière. This climatic impact ultimately led to the extinction of all Tsuga species in Europe. Today, there are ten recognized species of Tsuga worldwide, one of listed as a vulnerable species and four as near-threatened species. The genus Tsuga exhibits a disjunctive distribution in East Asia (EA), eastern North America (ENA), and western North America (WNA). It is crucial to comprehend the mechanisms underlying these distributional changes and to identify key climate variables to develop effective conservation strategies for Tsuga under future climate scenarios. In this study, we applied the maximum entropy (MaxEnt) model by combining distribution data for Tsuga with abundant pollen fossil data. Our objective was to investigate the climate factors that shape the distribution of Tsuga, identify climate thresholds, and elucidate distribution dynamics in the context of significant climate changes over the past 1070 thousand years (ka). Our findings highlight the pivotal role of precipitation as the key climate factor affecting the distribution of Tsuga. Specifically, in EA, summer precipitation was the key driver, while in North America (NA), winter precipitation exerted greater importance. Moreover, we observed similarities in climatic requirements between Tsuga species in Europe and EA, and declines in summer precipitation and winter temperature were major factors contributing to the extinction of Tsuga species in Europe. Quaternary glacial and interglacial fluctuations exerted substantial impacts on Tsuga distribution dynamics. The disappearance of Tsuga species in the Korean Peninsula may have occurred during the LGM (Last Glacial Maximum). The potential suitable area for Tsuga species in EA expanded during the cold periods, while in NA, it contracted. In the future, climate change may result Tsuga distribution area contraction in both the EA and NA. Our study has identified distinct response patterns of Tsuga in various geographic regions to Quaternary climate change and offers corresponding suggestions for Tsuga conservation. In the future, it will be imperative to prioritize the conservation of natural Tsuga distributions in EA and NA, with a focus on the impacts of precipitation fluctuation on the dynamic distribution of this genus.

Mu, C., and P. Li. 2023. Assessing the invasion risk of Chelydra serpentina in China under current and future climate change scenarios. Frontiers in Ecology and Evolution 11. https://doi.org/10.3389/fevo.2023.1277058

Chelydra serpentina, a species introduced to China for aquaculture purposes, is commonly found in its natural habitats within the country. The invasion of C. serpentina poses potential threats to both the biodiversity of China and human health. The potential distribution of C. serpentina has been simulated using the species distribution model – MaxEnt, incorporating global distribution data, climate, and land cover variables. Our simulations encompasses both current conditions and four future climate change scenarios. Currently, the potential distribution is concentrated in central, eastern, and southeastern regions of China, with the central and eastern regions facing the highest risk of invasion. Under future climate change scenarios, the distribution area may expand by 30–90%, and multiple provinces will face a more severe threat of invasion. This study presents the inaugural simulation of the potential invasion range of C. serpentina under current climatic conditions. Moreover, it reveals that climate change is likely to contribute to the expansion of its invasive range, thus furnishing a reference foundation for scientific prevention and control measures. We propose integrating citizen science and eDNA technologies into species monitoring to enhance the efficiency of detecting invasive species. This research has filled the gap in the research on the invasive distribution range of C. serpentina in China and globally, while also providing novel perspectives on the invasion control of this species.

Zhang, H., W. Guo, and W. Wang. 2023. The dimensionality reductions of environmental variables have a significant effect on the performance of species distribution models. Ecology and Evolution 13. https://doi.org/10.1002/ece3.10747

How to effectively obtain species‐related low‐dimensional data from massive environmental variables has become an urgent problem for species distribution models (SDMs). In this study, we will explore whether dimensionality reduction on environmental variables can improve the predictive performance of SDMs. We first used two linear (i.e., principal component analysis (PCA) and independent components analysis) and two nonlinear (i.e., kernel principal component analysis (KPCA) and uniform manifold approximation and projection) dimensionality reduction techniques (DRTs) to reduce the dimensionality of high‐dimensional environmental data. Then, we established five SDMs based on the environmental variables of dimensionality reduction for 23 real plant species and nine virtual species, and compared the predictive performance of those with the SDMs based on the selected environmental variables through Pearson's correlation coefficient (PCC). In addition, we studied the effects of DRTs, model complexity, and sample size on the predictive performance of SDMs. The predictive performance of SDMs under DRTs other than KPCA is better than using PCC. And the predictive performance of SDMs using linear DRTs is better than using nonlinear DRTs. In addition, using DRTs to deal with environmental variables has no less impact on the predictive performance of SDMs than model complexity and sample size. When the model complexity is at the complex level, PCA can improve the predictive performance of SDMs the most by 2.55% compared with PCC. At the middle level of sample size, the PCA improved the predictive performance of SDMs by 2.68% compared with the PCC. Our study demonstrates that DRTs have a significant effect on the predictive performance of SDMs. Specifically, linear DRTs, especially PCA, are more effective at improving model predictive performance under relatively complex model complexity or large sample sizes.

ter Huurne, M. B., L. J. Potgieter, C. Botella, and D. M. Richardson. 2023. Melaleuca (Myrtaceae): Biogeography of an important genus of trees and shrubs in a changing world. South African Journal of Botany 162: 230–244. https://doi.org/10.1016/j.sajb.2023.08.052

The number of naturalised and invasive woody plant species has increased rapidly in recent decades. Despite the increasing interest in tree and shrub invasions, little is known about the invasion ecology of most species. This paper explores the global movement of species in the genus Melaleuca (Myrtaceae; here including the genus Callistemon). We assess the global introduction history, distribution and biogeographic status of the genus. Various global species occurrence databases, citizen science (iNaturalist), and the literature were used.Seventy-two species [out of 386 Melaleuca species; 19%] have been introduced to at least 125 regions outside their native range. The main regions of global Melaleuca introductions are Southeast Asia, the southern parts of North America, south-eastern South America, southern Africa and Europe. The earliest record of a Melaleuca species outside of the native range of the genus is 1789. First records of Melaleuca species outside their native range were most commonly recorded in the 1960s, with records from all over the world. The main reasons for Melaleuca introductions were for use in the tea tree (pharmaceutical value) and ornamental horticulture industries. Melaleuca introductions, naturalizations and invasions are recent compared to many other woody plant taxa. Experiences in Florida and South Africa highlight the potential of Melaleuca species to spread rapidly and have significant ecological impacts. It is likely that the accumulating invasion debt will result in further naturalization and invasion of Melaleuca species in the future.