Science Enabled by Specimen Data

Fazlioglu, F., Wan, J. S. H., & Chen, L. (2020). Latitudinal shifts in mangrove species worldwide: evidence from historical occurrence records. Hydrobiologia. doi:10.1007/s10750-020-04403-x https://doi.org/10.1007/s10750-020-04403-x

Consequences of global climate change on mangrove habitats are ambiguous owing to multifaceted factors. In this study, we examined historical occurrences of ten common mangrove species and quantified the rate of latitudinal shift as a possible response to climate change. The Global Biodiversity Info…

Brightly, W. H., Hartley, S. E., Osborne, C. P., Simpson, K. J., & Strömberg, C. A. E. (2020). High silicon concentrations in grasses are linked to environmental conditions and not associated with C 4 photosynthesis. Global Change Biology. doi:10.1111/gcb.15343 https://doi.org/10.1111/gcb.15343

The uptake and deposition of silicon (Si) as silica phytoliths is common among land plants and is associated with a variety of functions. Among these, herbivore defense has received significant attention, particularly with regards to grasses and grasslands. Grasses are well known for their high sili…

Chevalier, M., Chase, B. M., Quick, L. J., Dupont, L. M., & Johnson, T. C. (2020). Temperature change in subtropical southeastern Africa during the past 790,000 yr. Geology. doi:10.1130/g47841.1 https://doi.org/10.1130/G47841.1

Across the glacial-interglacial cycles of the late Pleistocene (~700 k.y.), temperature variability at low latitudes is often considered to have been negligible compared to changes in precipitation. However, a paucity of quantified temperature records makes this difficult to reliably assess. In this…

Tan, K., Lu, T., & Ren, M.-X. (2020). Biogeography and evolution of Asian Gesneriaceae based on updated taxonomy. PhytoKeys, 157, 7–26. doi:10.3897/phytokeys.157.34032 https://doi.org/10.3897/phytokeys.157.34032

Based on an updated taxonomy of Gesneriaceae, the biogeography and evolution of the Asian Gesneriaceae are outlined and discussed. Most of the Asian Gesneriaceae belongs to Didymocarpoideae, except Titanotrichum was recently moved into Gesnerioideae. Most basal taxa of the Asian Gesneriaceae are fou…

De Jesús Hernández-Hernández, M., Cruz, J. A., & Castañeda-Posadas, C. (2020). Paleoclimatic and vegetation reconstruction of the miocene southern Mexico using fossil flowers. Journal of South American Earth Sciences, 104, 102827. doi:10.1016/j.jsames.2020.102827 https://doi.org/10.1016/j.jsames.2020.102827

Concern about the course of the current environmental problems has raised interest in investigating the different scenarios that have taken place in our planet throughout time. To that end, different methodologies have been employed in order to determine the different variables that compose the envi…

Li, K., Wang, J., Qiao, L., Zheng, R., Ma, Y., Chen, Y., … Liu, H. (2020). Diversity of Reproductive Phenology Among Subtropical Grasses Is Constrained by Evolution and Climatic Niche. Frontiers in Ecology and Evolution, 8. doi:10.3389/fevo.2020.00181 https://doi.org/10.3389/fevo.2020.00181

Reproductive phenology is sensitive to climatic changes and is associated with species functional types, distribution ranges, and their corresponding climatic niches. Phylogenetic niche conservatism in reproductive phenology also constrains its diversity and the distribution of species. Therefore, w…

Bellot, S., Bayton, R. P., Couvreur, T. L. P., Dodsworth, S., Eiserhardt, W. L., Guignard, M. S., … Baker, W. J. (2020). On the origin of giant seeds: the macroevolution of the double coconut ( Lodoicea maldivica ) and its relatives (Borasseae, Arecaceae). New Phytologist. doi:10.1111/nph.16750 https://doi.org/10.1111/nph.16750

Seed size shapes plant evolution and ecosystems, and may be driven by plant size and architecture, dispersers, habitat and insularity. How these factors influence the evolution of giant seeds is unclear, as are the rate of evolution and the biogeographical consequences of giant seeds. We generated D…

Jahanshiri, E., Mohd Nizar, N. M., Tengku Mohd Suhairi, T. A. S., Gregory, P. J., Mohamed, A. S., Wimalasiri, E. M., & Azam-Ali, S. N. (2020). A Land Evaluation Framework for Agricultural Diversification. Sustainability, 12(8), 3110. doi:10.3390/su12083110 https://doi.org/10.3390/su12083110

Shortlisting ecologically adaptable plant species can be a starting point for agricultural diversification projects. We propose a rapid assessment framework based on an ecological model that can accelerate the evaluation of options for sustainable crop diversification. To test the new model, expert-…

Goodwin, Z. A., Muñoz-Rodríguez, P., Harris, D. J., Wells, T., Wood, J. R. I., Filer, D., & Scotland, R. W. (2020). How long does it take to discover a species? Systematics and Biodiversity, 1–10. doi:10.1080/14772000.2020.1751339 https://doi.org/10.1080/14772000.2020.1751339

The description of a new species is a key step in cataloguing the World’s flora. However, this is only a preliminary stage in a long process of understanding what that species represents. We investigated how long the species discovery process takes by focusing on three key stages: 1, the collection …

Mungi, N. A., Qureshi, Q., & Jhala, Y. V. (2020). Expanding niche and degrading forests: Key to the successful global invasion of Lantana camara (sensu lato). Global Ecology and Conservation, 23, e01080. doi:10.1016/j.gecco.2020.e01080 https://doi.org/10.1016/j.gecco.2020.e01080

Estimating the distribution of invasive species and understanding the ecological reasons for their success is crucial for their management. Moreover, their ability to invade biogeographically distinct regions in short timespans poses interesting ecological questions. Lantana camara (sensu lato) is o…