Science Enabled by Specimen Data

Kopperud, B. T., S. Lidgard, and L. H. Liow. 2022. Enhancing georeferenced biodiversity inventories: automated information extraction from literature records reveal the gaps. PeerJ 10: e13921.

We use natural language processing (NLP) to retrieve location data for cheilostome bryozoan species (text-mined occurrences (TMO)) in an automated procedure. We compare these results with data combined from two major public databases (DB): the Ocean Biodiversity Information System (OBIS), and the Global Biodiversity Information Facility (GBIF). Using DB and TMO data separately and in combination, we present latitudinal species richness curves using standard estimators (Chao2 and the Jackknife) and range-through approaches. Our combined DB and TMO species richness curves quantitatively document a bimodal global latitudinal diversity gradient for extant cheilostomes for the first time, with peaks in the temperate zones. A total of 79% of the georeferenced species we retrieved from TMO (N = 1,408) and DB (N = 4,549) are non-overlapping. Despite clear indications that global location data compiled for cheilostomes should be improved with concerted effort, our study supports the view that many marine latitudinal species richness patterns deviate from the canonical latitudinal diversity gradient (LDG). Moreover, combining online biodiversity databases with automated information retrieval from the published literature is a promising avenue for expanding taxon-location datasets.

Torres-Conde, E. G. 2022. Is simultaneous arrival of pelagic Sargassum and Physalia physalis a new threat to the Atlantic coasts? Estuarine, Coastal and Shelf Science 275: 107971.

The massive influxes of pelagic Sargassum and Physalia physalis have become an increasingly recurrent phenomenon on the Atlantic coasts, affecting the economy and the structure of coastal ecosystems. For the first time, a study assesses the simultaneous arrival of these pelagic organisms. This study was conducted from June/2019 through June/2021 on the littoral of La Habana, one of the circulation points of the currents that form the North Atlantic Subtropical Gyre (NASG) run. Transects of 40 m were located parallel to the shoreline, the biomass of pelagic Sargassum was weighed, and the number of colonies of P. physalis was counted at the intertidal zone. The biomass of pelagic Sargassum was estimated as dry biomass. The simultaneous arrival of pelagic Sargassum and P. physalis was reported. Simultaneous arrivals of these pelagic species were recorded in the winter seasons, with the occurrence of cold fronts, low mean temperatures (22–27 °C), and strong northerly winds. Most months with the arrival of these pelagic species coincided with a negative average magnitude of the Arctic Oscillation Index, which favors the occurrence of cold fronts and northerly winds. The mean landing dry biomass of Sargassum during the peak months was low (0.73 ± 0.54 kg/m2) compared to the Mexican Caribbean. 145 P. physalis colonies over 100 m of coast length per year were reported during the study period. The higher visual occurrence of Sargassum natans I and the higher percentage of left-handed P. physalis colonies (56.16 ± 3.37) may indicate that the NASG area, which encloses the Sargasso Sea, could be the primary source of arrivals to La Habana littoral. As reported, the distribution of sightings of pelagic Sargassum and P. physalis coincided in several regions in the Atlantic Ocean and represents an urgent call for coordinated monitoring and development of predictive forecasting of beach landings. This work suggests that there are Atlantic coastal sites such as La Habana littoral that could host the dangerous simultaneous arrivals of pelagic Sargassum and P. physalis. Finally, the use of remote sensing techniques with in situ observations is considered important for future work, since using remote sensing techniques alone seems to miss important events such as those documented in this study.

Williams, C. J. R., D. J. Lunt, U. Salzmann, T. Reichgelt, G. N. Inglis, D. R. Greenwood, W. Chan, et al. 2022. African Hydroclimate During the Early Eocene From the DeepMIP Simulations. Paleoceanography and Paleoclimatology 37.

The early Eocene (∼56‐48 million years ago) is characterised by high CO2 estimates (1200‐2500 ppmv) and elevated global temperatures (∼10 to 16°C higher than modern). However, the response of the hydrological cycle during the early Eocene is poorly constrained, especially in regions with sparse data coverage (e.g. Africa). Here we present a study of African hydroclimate during the early Eocene, as simulated by an ensemble of state‐of‐the‐art climate models in the Deep‐time Model Intercomparison Project (DeepMIP). A comparison between the DeepMIP pre‐industrial simulations and modern observations suggests that model biases are model‐ and geographically dependent, however these biases are reduced in the model ensemble mean. A comparison between the Eocene simulations and the pre‐industrial suggests that there is no obvious wetting or drying trend as the CO2 increases. The results suggest that changes to the land sea mask (relative to modern) in the models may be responsible for the simulated increases in precipitation to the north of Eocene Africa. There is an increase in precipitation over equatorial and West Africa and associated drying over northern Africa as CO2 rises. There are also important dynamical changes, with evidence that anticyclonic low‐level circulation is replaced by increased south‐westerly flow at high CO2 levels. Lastly, a model‐data comparison using newly‐compiled quantitative climate estimates from palaeobotanical proxy data suggests a marginally better fit with the reconstructions at lower levels of CO2.

Reichgelt, T., D. R. Greenwood, S. Steinig, J. G. Conran, D. K. Hutchinson, D. J. Lunt, L. J. Scriven, and J. Zhu. 2022. Plant Proxy Evidence for High Rainfall and Productivity in the Eocene of Australia. Paleoceanography and Paleoclimatology 37.

During the early to middle Eocene, a mid‐to‐high latitudinal position and enhanced hydrological cycle in Australia would have contributed to a wetter and “greener” Australian continent where today arid to semi‐arid climates dominate. Here, we revisit 12 southern Australian plant megafossil sites from the early to middle Eocene to generate temperature, precipitation and seasonality paleoclimate estimates, net primary productivity (NPP) and vegetation type, based on paleobotanical proxies and compare to early Eocene global climate models. Temperature reconstructions are uniformly subtropical (mean annual, summer, and winter mean temperatures 19–21 °C, 25–27 °C and 14–16 °C, respectively), indicating that southern Australia was ∼5 °C warmer than today, despite a >20° poleward shift from its modern geographic location. Precipitation was less homogeneous than temperature, with mean annual precipitation of ∼60 cm over inland sites and >100 cm over coastal sites. Precipitation may have been seasonal with the driest month receiving 2–7× less than mean monthly precipitation. Proxy‐model comparison is favorable with an 1680 ppm CO2 concentration. However, individual proxy reconstructions can disagree with models as well as with each other. In particular, seasonality reconstructions have systemic offsets. NPP estimates were higher than modern, implying a more homogenously “green” southern Australia in the early to middle Eocene, when this part of Australia was at 48–64 °S, and larger carbon fluxes to and from the Australian biosphere. The most similar modern vegetation type is modern‐day eastern Australian subtropical forest, although distance from coast and latitude may have led to vegetation heterogeneity.

Tazikeh, S., S. Zendehboudi, S. Ghafoori, A. Lohi, and N. Mahinpey. 2022. Algal bioenergy production and utilization: Technologies, challenges, and prospects. Journal of Environmental Chemical Engineering 10: 107863.

Increasing demand for energy and also escalating environmental pollution show that industries cannot rely on fossil fuels, and it is necessary to adopt an alternative. In recent decades, algal bioenergy has emerged as a renewable energy source in different industries. However, algal bioenergy production is costly and faces different challenges and unknown aspects that need to be addressed. Experimental and theoretical research works have revealed that the efficiency of algal bioenergy production is influenced by several factors, including algae species, temperature, light, CO2, cultivation method, and available nutrients. Algal bioenergy production on commercial scales in cost-effective ways is the main aim of industries to compete with fossil fuels. Hence, it is vital to have a comprehensive knowledge of the previous findings and attain a suitable pathway for future studies/activities. In the present review paper, the potential of microalgae bioenergy production, influential parameters, previous experimental and theoretical studies, and different methods for microalgae biofuel production from cultivation stage to utilization are reviewed. Moreover, this work discusses the engineering activities and economic analysis of microalgae cultivation to utilization, and also useful suggestions are made for future research works. The outcomes of the present work confirm that innovative engineering methods can overcome scale-up challenging, increase the rate of production, and decrease the cost of algae bioenergy production. Hence, there is no long way to produce cost-effective algae bioenergy on commercial scales.

Chevalier, M. 2022. <i>crestr</i>: an R package to perform probabilistic climate reconstructions from palaeoecological datasets. Climate of the Past 18: 821–844.

Abstract. Statistical climate reconstruction techniques are fundamental tools to study past climate variability from fossil proxy data. In particular, the methods based on probability density functions (or PDFs) can be used in various environments and with different climate proxies because they rely on elementary calibration data (i.e. modern geolocalised presence data). However, the difficulty of accessing and curating these calibration data and the complexity of interpreting probabilistic results have often limited their use in palaeoclimatological studies. Here, I introduce a new R package (crestr) to apply the PDF-based method CREST (Climate REconstruction SofTware) on diverse palaeoecological datasets and address these problems. crestr includes a globally curated calibration dataset for six common climate proxies (i.e. plants, beetles, chironomids, rodents, foraminifera, and dinoflagellate cysts) associated with an extensive range of climate variables (20 terrestrial and 19 marine variables) that enables its use in most terrestrial and marine environments. Private data collections can also be used instead of, or in combination with, the provided calibration dataset. The package includes a suite of graphical diagnostic tools to represent the data at each step of the reconstruction process and provide insights into the effect of the different modelling assumptions and external factors that underlie a reconstruction. With this R package, the CREST method can now be used in a scriptable environment and thus be more easily integrated with existing workflows. It is hoped that crestr will be used to produce the much-needed quantified climate reconstructions from the many regions where they are currently lacking, despite the availability of suitable fossil records. To support this development, the use of the package is illustrated with a step-by-step replication of a 790 000-year-long mean annual temperature reconstruction based on a pollen record from southeastern Africa.

Sluiter, I. R. K., G. R. Holdgate, T. Reichgelt, D. R. Greenwood, A. P. Kershaw, and N. L. Schultz. 2022. A new perspective on Late Eocene and Oligocene vegetation and paleoclimates of South-eastern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 596: 110985.

We present a composite terrestrial pollen record of latest Eocene through Oligocene (35.5–23 Ma) vegetation and climate change from the Gippsland Basin of south-eastern Australia. Climates were overwhelmingly mesothermic through this time period, with mean annual temperature (MAT) varying between 13 and 18 °C, with an average of 16 °C. We provide evidence to support a cooling trend through the Eocene–Oligocene Transition (EOT), but also identify three subsequent warming cycles through the Oligocene, leading to more seasonal climates at the termination of the Epoch. One of the warming episodes in the Early Oligocene appears to have also occurred at two other southern hemisphere sites at the Drake Passage as well as off eastern Tasmania, based on recent research. Similarities with sea surface temperature records from modern high southern latitudes which also record similar cycles of warming and cooling, are presented and discussed. Annual precipitation varied between 1200 and 1700 mm/yr, with an average of 1470 mm/yr through the sequence. Notwithstanding the extinction of Nothofagus sg. Brassospora from Australia and some now microthermic humid restricted Podocarpaceae conifer taxa, the rainforest vegetation of lowland south-eastern Australia is reconstructed to have been similar to present day Australian Evergreen Notophyll Vine Forests existing under the sub-tropical Köppen-Geiger climate class Cfa (humid subtropical) for most of the sequence. Short periods of cooler climates, such as occurred through the EOT when MAT was ~ 13 °C, may have supported vegetation similar to modern day Evergreen Microphyll Fern Forest. Of potentially greater significance, however, was a warm period in the Early to early Late Oligocene (32–26 Ma) when MAT was 17–18 °C, accompanied by small but important increases in Araucariaceae pollen. At this time, Araucarian Notophyll/Microphyll Vine Forest likely occurred regionally.

Okamura, Y., A. Sato, L. Kawaguchi, A. J. Nagano, M. Murakami, H. Vogel, and J. Kroymann. 2022. Microevolution of Pieris butterfly genes involved in host plant adaptation along a host plant community cline. Molecular Ecology 31: 3083–3097.

Herbivorous insects have evolved counteradaptations to overcome the chemical defenses of their host plants. Several of these counteradaptations have been elucidated at the molecular level, in particular for insects specialized on cruciferous host plants. While the importance of these counteradaptations for host plant colonization is well established, little is known about their microevolutionary dynamics in the field. In particular, it is not known whether and how host plant diversity shapes diversity in insect counteradaptations. In this study, we examine patterns of host plant use and insect counteradaptation in three Pieris butterfly species across Japan. The larvae of these butterflies express nitrile‐specifier protein (NSP) and its paralog major allergen (MA) in their gut to overcome the highly diversified glucosinolate‐myrosinase defense system of their cruciferous host plants. Pieris napi and Pieris melete colonize wild Brassicaceae whereas Pieris rapae typically uses cultivated Brassica as a host, regardless of the local composition of wild crucifers. As expected, NSP and MA diversity was independent of the local composition of wild Brassicaceae in P. rapae. In contrast, NSP diversity correlated with local host plant diversity in both species that preferred wild Brassicaceae. P. melete and P. napi both revealed two distinct major NSP alleles, which shaped diversity among local populations, albeit with different evolutionary trajectories. In comparison, MA showed no indication for local adaptation. Altogether, MA appeared to be evolutionary more conserved than NSP, suggesting that both genes play different roles in diverting host plant chemical defense.

Laeseke, P., B. Martínez, A. Mansilla, and K. Bischof. 2021. Invaders in waiting? Non-equilibrium in Southern Hemisphere seaweed distributions may lead to underestimation of Antarctic invasion potential. Frontiers of Biogeography 13.

Bioinvasions pose a major threat to global biodiversity. Correlative Ecological Niche Models (ENMs) can be a valuable tool to identify invaders and invasion sites. However, in cases when species are in non-equilibrium with their native environment (i.e. do not fill their niche), correlative approach…

Vasconcelos, T., J. D. Boyko, and J. M. Beaulieu. 2021. Linking mode of seed dispersal and climatic niche evolution in flowering plants. Journal of Biogeography.

Aim: Due to the sessile nature of flowering plants, movements to new geographical areas occur mainly during seed dispersal. Frugivores tend to be efficient dispersers because animals move within the boundaries of their preferable niches, so seeds are more likely to be transported to environments tha…