Bionomia will be offline 2025-03-23 13:00 UTC for 1 hr to refresh data from the Global Biodiversity Information Facility.

Science Enabled by Specimen Data

Lima, E., L. J. S. Anjos, T. T. G. Takashima, and A. L. Ilkiu-Borges. 2025. Richness and endemism patterns of Frullania Raddi reveal key areas for conservation of liverworts in Brazil. Biodiversity and Conservation. https://doi.org/10.1007/s10531-025-03040-x

Understanding the different distribution patterns of biodiversity is essential for the development of conservation strategies. This theme has become extremely relevant, especially due to the current context of climate change. The genus Frullania belongs to the group of liverworts and has a wide diversity of species in the world and in Brazil. This genus can be a potential indicator for understanding the diversity patterns of liverworts in Brazil and can be used in the process of selecting key areas for conservation since it represents one of the largest genera of liverworts in the country. Therefore, we analyzed the distribution patterns of Frullania in Brazil. The results indicate that areas near the northeastern, southeastern, and southern coastline exhibit greatest species richness and endemism, overlapping with the range of the Atlantic Forest. The distribution of the genus is influenced by temperature seasonality, mean temperature of the coldest quarter, and precipitation of the coldest quarter. Through this study, we were able to point out the areas with greater richness and endemism of Frullania in Brazil and indicate areas that need to be considered in conservation plans.

Yang, M., Y. Qi, X. Xian, N. Yang, L. Xue, C. Zhang, H. Bao, and W. Liu. 2025. Coupling phylogenetic relatedness and distribution patterns provides insights into sandburs invasion risk assessment. Science of The Total Environment 958: 177819. https://doi.org/10.1016/j.scitotenv.2024.177819

Invasive sandburs (Cenchrus spp.), tropical and subtropical plants, are preferred in grasslands and agricultural ecosystems worldwide, causing significant crop production losses and reducing native biodiversity. Integrating phylogenetic relatedness and potentially suitable habitats (PSHs) to identify areas at risk of invasion is critical for prioritizing management efforts and supporting decisions on early warning and surveillance for sandbur invasions. However, despite risk assessments for individual Cenchrus species, the combined analysis of suitable habitats and phylogenetic relationships remains unclear. Therefore, this study aims to assess the invasion risk regions—including PSHs, species richness (SR), and phylogenetic structure—of eight invasive and potentially invasive sandburs in China, to quantify their niche overlap and identify driving factors. Our results showed that the phylogenetic distance of potentially invasive sandburs was closely related to invasive sandburs. Especially, three potentially invasive sandburs, C. ciliaris, C. setigerus, and C. myosuroides, possessed invasion potential resulting from close phylogenetic relatedness and high climatic suitability compared with invasive sandburs. The PSHs for invasive sandburs were distributed in wider regions except northwest China and had higher suitability to different environmental conditions. Potentially invasive sandburs were primarily located in southwestern and southern China driven by precipitation, especially, being inspected in Guangdong, Hainan, and Yunnan on numerous occasions, or potentially introduced in Guangxi, Taiwan, and Fujian for sandburs invasion hotspots. The phylogenetic clustering for eight sandburs occurred in the eastern, center, and southern coastal China, where higher SR in distribution was correlated with invasion hotspots. The SR and phylogenetic relatedness metrics were related to temperature and topographic variables. Totally, the expansion and invasion risk could be increased toward higher latitudes under future global warming. These findings offer novel insights for the prevention and management of sandburs invasions.

Mokotjomela, T. M., L. R. Vukeya, T. J. Mbele, K. Matsokane, T. Munyai, B. R. Ntloko, and M. P. Monyatsi. 2024. The alien and invasive plant species that may be a future conservation threat to the Lesotho Afro-alpine Drakensberg area. Regional Environmental Change 24. https://doi.org/10.1007/s10113-024-02326-0

In this study, we documented and compared similarities of the alien plant species richness between South Africa represented by three provinces: Free State (FS), Eastern Cape (EC), and KwaZulu-Natal (KZN), and Lesotho—an important water source area for southern Africa. We tested the prediction that alien plant species in Lesotho are a subset of South Africa’s species partly because of the short geographical distances between the provinces and Lesotho, and environmental similarity. Overall, 7124 records containing 1040 individual alien plant species belonging to 147 families were documented. South Africa had significantly greater alien plant species records than Lesotho. Of 147 plant families, 44 were represented in both countries, and 101 families did not occur in Lesotho. Against the study prediction, the Geraniaceae and Orobanchaceae families occurred in Lesotho but not in three provinces. KwaZulu-Natal had a significantly greater number of species than Lesotho but not the other provinces, and 49% of species in three provinces originated from the Americas (i.e. South and North), Europe, and Asia. A similar pattern was observed in Lesotho. Woody and herbaceous alien plants, habitat transformers, dominated three provinces, while herbaceous species dominated Lesotho. The 62% of 1040 alien species were not listed in the South African national regulations, indicating their negative impacts are also unknown in the study region. Plant nurseries were a dominant species dispersal pathway in South Africa, while home gardens were prominent in Lesotho. We conclude that invasive plant species constitute a future threat to the Lesotho Drakensberg highlands water catchments and recommend prioritising their management and improving cross-border biosecurity between Lesotho and South Africa.

Xu, L., Z. Song, T. Li, Z. Jin, B. Zhang, S. Du, S. Liao, et al. 2024. New insights into the phylogeny and infrageneric taxonomy of Saussurea based on hybrid capture phylogenomics (Hyb-Seq). Plant Diversity. https://doi.org/10.1016/j.pld.2024.10.003

Saussurea is one of the largest and most rapidly evolving genera within the Asteraceae, comprising approximately 520 species from the Northern Hemisphere. A comprehensive infrageneric classification, supported by robust phylogenetic trees and corroborated by morphological and other data, has not yet been published. For the first time, we recovered a well-resolved nuclear phylogeny of Saussurea consisting of four main clades, which was also supported by morphological data. Our analyses show that ancient hybridization is the most likely source of deep cytoplasmic-nuclear conflict in Saussurea, and a phylogeny based on nuclear data is more suitable than one based on chloroplast data for exploring the infrageneric classification of Saussurea. Based on the nuclear phylogeny obtained and morphological characters, we proposed a revised infrageneric taxonomy of Saussurea, which includes four subgenera and 13 sections. Specifically, 1) S. sect. Cincta, S. sect. Gymnocline, S. sect. Lagurostemon, and S. sect. Strictae were moved from S. subg. Saussurea to S. subg. Amphilaena, 2) S. sect. Pseudoeriocoryne was moved from S. subg. Eriocoryne to S. subg. Amphilaena, and 3) S. sect. Laguranthera was moved from S. subg. Saussurea to S. subg. Theodorea.

Rincón Barrado, M., M. Perez, T. Villaverde, C. García‐Verdugo, J. Caujapé‐Castells, R. Riina, and I. Sanmartín. 2024. Phylogenomics and phylogeographic model testing using convolutional neural networks reveal a history of recent admixture in the Canarian Kleinia neriifolia. Molecular Ecology 33. https://doi.org/10.1111/mec.17537

Multiple‐island endemics (MIE) are considered ideal natural subjects to study patterns of island colonization that involve recent population‐level genetic processes. Kleinia neriifolia is a Canarian MIE widespread across the archipelago, which exhibits a close phylogenetic relationship with species in northwest Africa and at the other side of the Sahara Desert. Here, we used target sequencing with plastid skimming (Hyb‐Seq), a dense population‐level sampling of K. neriifolia, and representatives of its African–southern Arabian relatives to infer phylogenetic relationships and divergence times at the species and population levels. Using population genetic techniques and machine learning (convolutional neural networks [CNNs]), we reconstructed phylogeographic relationships and patterns of genetic admixture based on a multilocus SNP nuclear dataset. Phylogenomic analysis based on the nuclear dataset identifies the northwestern African Kleinia anteuphorbium as the sister species of K. neriifolia, with divergence starting in the early Pliocene. Divergence from its sister clade, comprising species from the Horn of Africa and southern Arabia, is dated to the arid Messinian period, lending support to the climatic vicariance origin of the Rand Flora. Phylogeographic model testing with CNNs supports an initial colonization of the central island of Tenerife followed by eastward and westward migration across the archipelago, which resulted in the observed east/west phylogeographic split. Subsequent population extinctions linked to aridification events, and recolonization from Tenerife, are proposed to explain the patterns of genetic admixture in the eastern Canary Islands. We demonstrate that CNNs based on SNPs can be used to discriminate among complex scenarios of island migration and colonization.

Lin, P.-C., T.-Y. Chiang, M.-L. Chen, T.-W. Hsu, P.-W. Gean, S.-T. Cheng, and Y.-H. Hsu. 2024. Global prospects for cultivating Centella asiatica: An ecological niche modeling approach under current and future climatic scenarios. Journal of Agriculture and Food Research 18: 101380. https://doi.org/10.1016/j.jafr.2024.101380

Centella asiatica is a medicinal plant recognized for its various benefits contributed by its metabolites and has been used as a food supplement since prehistorical times across various cultures. Due to the reliance on natural populations of C. asiatica and the impacts of environmental factors on its yield and centelloside production, there is a need to identify suitable cultivation areas for this species. We employed ecological niche modelling with bioclimatic and soil variables to evaluate the suitability of cultivation under current and future climatic scenarios. Our results identified suitable areas for cultivating C. asiatica worldwide, indicating its potential for global commercial cultivation. However, the niche reconstruction of highly concentrated centelloside was restricted to South and Southeast Asia due to the lack of available data. When we projected the modelled niche of centelloside in these regions, we observed a lower occurrence probability in some areas, suggesting potential challenges in cost-effectiveness. Nevertheless, our results suggest a consistent future distribution for this species when we projected the modelled niche under future climates based on various socio-economic scenarios. This study not only identifies suitable areas to develop commercial cultivation for C. asiatica with highly concentrated centelloside, but also provides supporting evidence of the consistency of these areas, which can increase its sustainability.

Saunders, T. C., I. Larridon, W. J. Baker, R. L. Barrett, F. Forest, E. Françoso, O. Maurin, et al. 2024. Tangled webs and spider‐flowers: Phylogenomics, biogeography, and seed morphology inform the evolutionary history of Cleomaceae. American Journal of Botany 111. https://doi.org/10.1002/ajb2.16399

Premise Cleomaceae is an important model clade for studies of evolutionary processes including genome evolution, floral form diversification, and photosynthetic pathway evolution. Diversification and divergence patterns in Cleomaceae remain tangled as research has been restricted by its worldwide distribution, limited genetic sampling and species coverage, and a lack of definitive fossil calibration points.MethodsWe used target sequence capture and the Angiosperms353 probe set to perform a phylogenetic study of Cleomaceae. We estimated divergence times and biogeographic analyses to explore the origin and diversification of the family. Seed morphology across extant taxa was documented with multifocal image‐stacking techniques and morphological characters were extracted, analyzed, and compared to fossil records.ResultsWe recovered a well‐supported and resolved phylogenetic tree of Cleomaceae generic relationships that includes 236 (~86%) species. We identified 11 principal clades and confidently placed Cleomella as sister to the rest of the family. Our analyses suggested that Cleomaceae and Brassicaceae diverged ~56 mya, and Cleomaceae began to diversify ~53 mya in the Palearctic and Africa. Multiple transatlantic disjunct distributions were identified. Seeds were imaged from 218 (~80%) species in the family and compared to all known fossil species.ConclusionsOur results represent the most comprehensive phylogenetic study of Cleomaceae to date. We identified transatlantic disjunctions and proposed explanations for these patterns, most likely either long‐distance dispersals or contractions in latitudinal distributions caused by climate change over geological timescales. We found that seed morphology varied considerably but mostly mirrored generic relationships.

Hodgson, R. J., C. Liddicoat, C. Cando-Dumancela, N. W. Fickling, S. D. Peddle, S. Ramesh, and M. F. Breed. 2024. Increasing aridity strengthens the core bacterial rhizosphere associations in the pan-palaeotropical C4 grass, Themeda triandra. Applied Soil Ecology 201: 105514. https://doi.org/10.1016/j.apsoil.2024.105514

Understanding belowground plant-microbial interactions is fundamental to predicting how plant species respond to climate change, particularly in global drylands. However, these interactions are poorly understood, especially for keystone grass species like the pan-palaeotropical Themeda triandra. Here, we used 16S rRNA amplicon sequencing to characterise microbiota in rhizospheres and bulk soils associated with T. triandra. We applied this method to eight native sites across a 3-fold aridity gradient (aridity index range = 0.318 to 0.903 = 87 % global aridity distribution) in southern Australia. By examining the relative contributions of climatic, edaphic, ecological, and host specific phenotypic traits, we identified the ecological drivers of core T. triandra-associated microbiota. We show that aridity had the strongest effect on shaping these core microbiotas, and report that a greater proportion of bacterial taxa that were from the core rhizosphere microbiomes were also differentially abundant in more arid T. triandra regions. These results suggest that T. triandra naturally growing in soils under more arid conditions have greater reliance on rhizosphere core taxa than plants growing under wetter conditions. Our study underscores the likely importance of targeted recruitment of bacteria into the rhizosphere by grassland keystone species, such as T. triandra, when growing in arid conditions. This bacterial soil recruitment is expected to become even more important under climate change.

Bürger, M., and J. Chory. 2024. A potential role of heat‐moisture couplings in the range expansion of Striga asiatica. Ecology and Evolution 14. https://doi.org/10.1002/ece3.11332

Parasitic weeds in the genera Orobanche, Phelipanche (broomrapes) and Striga (witchweeds) have a devastating impact on food security across much of Africa, Asia and the Mediterranean Basin. Yet, how climatic factors might affect the range expansion of these weeds in the context of global environmental change remains unexplored. We examined satellite‐based environmental variables such as surface temperature, root zone soil moisture, and elevation, in relation to parasitic weed distribution and environmental conditions over time, in combination with observational data from the Global Biodiversity Information Facility (GBIF). Our analysis reveals contrasting environmental and altitude preferences in the genera Striga and Orobanche. Asiatic witchweed (Striga asiatica), which infests corn, rice, sorghum, and sugar cane crops, appears to be expanding its range in high elevation habitats. It also shows a significant association with heat‐moisture coupling events, the frequency of which is rising in such environments. These results point to geographical shifts in distribution and abundance in parasitic weeds due to climate change.

Serra‐Diaz, J. M., J. Borderieux, B. Maitner, C. C. F. Boonman, D. Park, W. Guo, A. Callebaut, et al. 2024. occTest: An integrated approach for quality control of species occurrence data. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13847

Aim Species occurrence data are valuable information that enables one to estimate geographical distributions, characterize niches and their evolution, and guide spatial conservation planning. Rapid increases in species occurrence data stem from increasing digitization and aggregation efforts, and citizen science initiatives. However, persistent quality issues in occurrence data can impact the accuracy of scientific findings, underscoring the importance of filtering erroneous occurrence records in biodiversity analyses.InnovationWe introduce an R package, occTest, that synthesizes a growing open‐source ecosystem of biodiversity cleaning workflows to prepare occurrence data for different modelling applications. It offers a structured set of algorithms to identify potential problems with species occurrence records by employing a hierarchical organization of multiple tests. The workflow has a hierarchical structure organized in testPhases (i.e. cleaning vs. testing) that encompass different testBlocks grouping different testTypes (e.g. environmental outlier detection), which may use different testMethods (e.g. Rosner test, jacknife,etc.). Four different testBlocks characterize potential problems in geographic, environmental, human influence and temporal dimensions. Filtering and plotting functions are incorporated to facilitate the interpretation of tests. We provide examples with different data sources, with default and user‐defined parameters. Compared to other available tools and workflows, occTest offers a comprehensive suite of integrated tests, and allows multiple methods associated with each test to explore consensus among data cleaning methods. It uniquely incorporates both coordinate accuracy analysis and environmental analysis of occurrence records. Furthermore, it provides a hierarchical structure to incorporate future tests yet to be developed.Main conclusionsoccTest will help users understand the quality and quantity of data available before the start of data analysis, while also enabling users to filter data using either predefined rules or custom‐built rules. As a result, occTest can better assess each record's appropriateness for its intended application.