Science Enabled by Specimen Data

White, S. V., and A. M. Royer. 2024. Floral colour variation across life history and geography in Mimulus ringens (Phrymaceae). Botanical Journal of the Linnean Society. https://doi.org/10.1093/botlinnean/boad065

Floral and life history traits play important roles in plant speciation. The genus Mimulus is a model system for studying speciation. It includes examples of species in which floral colour facilitates isolation through pollinator shifts, as well as life history changes that result in temporal or ecogeographic isolation. We investigate the possibility that both floral colour and life history have shifted together in a recently described, genetically distinct group within the species Mimulus ringens. Using a large, range-wide citizen science dataset, we test for geographic trends in flower colour and flowering time. We combine this with greenhouse studies in populations of known life history to test for differences in flower colour with life history. We show that darker-flowered plants are more common at higher latitudes, that annual-like populations have darker flowers, and that flowering time varies with latitude only in the subset of populations that have lighter flowers. This suggests that annual-like populations (with the earlier flowering time typical of this life history) are restricted to the northern part of the species range and may have distinct trends in flowering date.

Xiao, S., S. Li, J. Huang, X. Wang, M. Wu, R. Karim, W. Deng, and T. Su. 2024. Influence of climate factors on the global dynamic distribution of Tsuga (Pinaceae). Ecological Indicators 158: 111533. https://doi.org/10.1016/j.ecolind.2023.111533

Throughout the Quaternary period, climate change has significantly influenced plant distribution, particularly affecting species within the genus Tsuga (Endl.) Carrière. This climatic impact ultimately led to the extinction of all Tsuga species in Europe. Today, there are ten recognized species of Tsuga worldwide, one of listed as a vulnerable species and four as near-threatened species. The genus Tsuga exhibits a disjunctive distribution in East Asia (EA), eastern North America (ENA), and western North America (WNA). It is crucial to comprehend the mechanisms underlying these distributional changes and to identify key climate variables to develop effective conservation strategies for Tsuga under future climate scenarios. In this study, we applied the maximum entropy (MaxEnt) model by combining distribution data for Tsuga with abundant pollen fossil data. Our objective was to investigate the climate factors that shape the distribution of Tsuga, identify climate thresholds, and elucidate distribution dynamics in the context of significant climate changes over the past 1070 thousand years (ka). Our findings highlight the pivotal role of precipitation as the key climate factor affecting the distribution of Tsuga. Specifically, in EA, summer precipitation was the key driver, while in North America (NA), winter precipitation exerted greater importance. Moreover, we observed similarities in climatic requirements between Tsuga species in Europe and EA, and declines in summer precipitation and winter temperature were major factors contributing to the extinction of Tsuga species in Europe. Quaternary glacial and interglacial fluctuations exerted substantial impacts on Tsuga distribution dynamics. The disappearance of Tsuga species in the Korean Peninsula may have occurred during the LGM (Last Glacial Maximum). The potential suitable area for Tsuga species in EA expanded during the cold periods, while in NA, it contracted. In the future, climate change may result Tsuga distribution area contraction in both the EA and NA. Our study has identified distinct response patterns of Tsuga in various geographic regions to Quaternary climate change and offers corresponding suggestions for Tsuga conservation. In the future, it will be imperative to prioritize the conservation of natural Tsuga distributions in EA and NA, with a focus on the impacts of precipitation fluctuation on the dynamic distribution of this genus.

Novoa, A., H. Hirsch, M. L. Castillo, S. Canavan, L. González, D. M. Richardson, P. Pyšek, et al. 2023. Genetic and morphological insights into the Carpobrotus hybrid complex around the world. NeoBiota 89: 135–160. https://doi.org/10.3897/neobiota.89.109164

The genus Carpobrotus N.E.Br. comprises between 12 and 25 species, most of which are native to South Africa. Some Carpobrotus species are considered among the most damaging invasive species in coastal dune systems worldwide. In their introduced areas, these species represent a serious threat to native species and significantly impact soil conditions and geochemical processes. Despite being well studied, the taxonomy of Carpobrotus remains problematic, as the genus comprises a complex of species that hybridize easily and are difficult to distinguish from each other. To explore the population genetic structure of invasive Carpobrotus species (i.e., C. acinaciformis and C. edulis) across a significant part of their native and non-native ranges, we sampled 40 populations across Argentina, Italy, New Zealand, Portugal, South Africa, Spain, and the USA. We developed taxon-specific microsatellite markers using a Next Generation Sequencing approach to analyze the population genetic structure and incidence of hybridization in native and non-native regions. We identified three genetically distinct clusters, which are present in both the native and non-native regions. Based on a set of selected morphological characteristics, we found no clear features to identify taxa morphologically. Our results suggest that the most probable sources of global introductions of Carpobrotus species are the Western Cape region of South Africa and the coastline of California. We suggest that management actions targeting Carpobrotus invasions globally should focus on preventing additional introductions from the east coast of South Africa, and on searching for prospective biocontrol agents in the Western Cape region of South Africa.

Putra, A. R., K. A. Hodgins, and A. Fournier‐Level. 2023. Assessing the invasive potential of different source populations of ragweed (Ambrosia artemisiifolia L.) through genomically informed species distribution modelling. Evolutionary Applications. https://doi.org/10.1111/eva.13632

The genetic composition of founding populations is likely to play a key role in determining invasion success. Individual genotypes may differ in habitat preference and environmental tolerance, so their ability to colonize novel environments can be highly variable. Despite the importance of genetic variation on invasion success, its influence on the potential distribution of invaders is rarely investigated. Here, we integrate population genomics and ecological niche models (ENMs) into a single framework to predict the distribution of globally invasive common ragweed (Ambrosia artemisiifolia) in Australia. We identified three genetic clusters for ragweed and used these to construct cluster‐specific ENMs and characterize within‐species niche differentiation. The potential range of ragweed in Australia depended on the genetic composition and continent of origin of the introduced population. Invaders originating from warmer, wetter climates had a broader potential distribution than those from cooler, drier ones. By quantifying this change, we identified source populations most likely to expand the ragweed distribution. As prevention remains the most effective method of invasive species management, our work provides a valuable way of ranking the threat posed by different populations to better inform management decisions.

Qin, F., T. Xue, X. Zhang, X. Yang, J. Yu, S. R. Gadagkar, and S. Yu. 2023. Past climate cooling and orogenesis of the Hengduan Mountains have influenced the evolution of Impatiens sect. Impatiens (Balsaminaceae) in the Northern Hemisphere. BMC Plant Biology 23. https://doi.org/10.1186/s12870-023-04625-w

Background Impatiens sect. Impatiens is distributed across the Northern Hemisphere and has diversified considerably, particularly within the Hengduan Mountains (HDM) in southwest China. Yet, the infra-sectional phylogenetic relationships are not well resolved, largely due to limited taxon sampling and an insufficient number of molecular markers. The evolutionary history of its diversification is also poorly understood. In this study, plastome data and the most complete sampling to date were used to reconstruct a robust phylogenetic framework for this section. The phylogeny was then used to investigate its biogeographical history and diversification patterns, specifically with the aim of understanding the role played by the HDM and past climatic changes in its diversification. Results A stable phylogeny was reconstructed that strongly supported both the monophyly of the section and its division into seven major clades (Clades I-VII). Molecular dating and ancestral area reconstruction suggest that sect. Impatiens originated in the HDM and Southeast China around 11.76 Ma, after which different lineages dispersed to Northwest China, temperate Eurasia, and North America, mainly during the Pliocene and Pleistocene. An intercontinental dispersal event from East Asia to western North America may have occurred via the Bering Land Bridge or Aleutian Islands. The diversification rate was high during its early history, especially with the HDM, but gradually decreased over time both within and outside the HDM. Multiple linear regression analysis showed that the distribution pattern of species richness was strongly associated with elevation range, elevation, and mean annual temperature. Finally, ancestral niche analysis indicated that sect. Impatiens originated in a relatively cool, middle-elevation area. Conclusions We inferred the evolutionary history of sect. Impatiens based on a solid phylogenetic framework. The HDM was the primary source or pump of its diversity in the Northern Hemisphere. Orogeny and climate change may have also shaped its diversification rates, as a steady decrease in the diversification rate coincided with the uplift of the HDM and climate cooling. These findings provide insights into the distribution pattern of sect. Impatiens and other plants in the Northern Hemisphere.

Petitpierre, B., C. Arnold, L. N. Phelps, and A. Guisan. 2023. A tale of three vines: current and future threats to wild Eurasian grapevine by vineyards and invasive rootstocks. Diversity and Distributions. https://doi.org/10.1111/ddi.13780

AbstractAimEurasian grapevine (Vitis vinifera), one of the most important fruit crops worldwide, diverged from its wild and currently endangered relative (V. vinifera ssp. sylvestris) about 11,000 years ago. In the 19th century, detrimental phylloxera and disease outbreaks in Europe forced grapevine cultivation to use American Vitis species as rootstocks, which have now become naturalized in Europe and are starting to colonize similar habitats to the wild grapevine. Accordingly, wild grapevine now faces two additional threats: the expansion of vineyards and invasive rootstocks. Furthermore, climate change is expected to have significant impacts on the distribution of all grapevines in Europe. In this study, we quantified the distributional and bioclimatic overlap between grapewine's wild relative and the taxa associated with viticulture, under current and future climate.LocationEurope, North America.MethodsThe distributions of wild Eurasian grapevine, cultivated Eurasian grapevine and five American grapevine species used in rootstock breeding programs were linked to climate variables to model their bioclimatic niches. These ecological niche models were used to quantify the spatial and bioclimatic overlap between these seven Vitis taxa in Europe.ResultsNiche and spatial overlap is high between the wild, cultivated and rootstock grapevines, suggesting that existing conflicts between vineyards and wild grapevine conservation may be further complicated by naturalized rootstocks outcompeting the wild grapevine, especially under future scenarios of climate change. In the hottest scenario, only 76.1% of the current distribution of the Eurasian grapevine remains in suitable area.Main ConclusionsAs wild grapevine may ultimately provide a valuable gene pool for adapting viticulture to a changing world, these findings demonstrate the need for improved management of the wild grapevine and its natural habitat, to counteract the harmful effects of global change on the wild relatives of viticulture.

Ambrosia trifida L. (Asteraceae) – североамериканское однолетнее растение, включенное в перечень карантинных объектов в Европе, в том числе в Российской Федерации и сопредельных странах. Об- суждаются результаты исследований 2017–2021 гг. по выявлению современного распространения и особенностей натурализации этого вида на европейской части России. Центрами массовой натура- лизации А. trifida на исследуемой территории являются Заволжье (Самарская область, юг Татарста- на), Предуралье (Оренбургская область, Башкортостан), Предволжье (запад Саратовской области), Хоперско-Бузулукская равнина (северо-запад Волгоградской области), юго-запад Окско-Донского плоскоместья и Калачская возвышенность (центр и юг Воронежской области). Анклавы в виде на- турализовавшихся популяций отмечены в Брянской и Владимирской областях, а также в городах Казань и Уфа. В дальнейшем можно ожидать распространение A. trifida на большой части европей- ской территории России.

Kudoh, A., J. P. Megonigal, J. A. Langley, G. L. Noyce, T. Sakai, and D. F. Whigham. 2023. Reproductive Responses to Increased Shoot Density and Global Change Drivers in a Widespread Clonal Wetland Species, Schoenoplectus americanus. Estuaries and Coasts. https://doi.org/10.1007/s12237-023-01249-z

The expansion of many wetland species is a function of both clonal propagation and sexual reproduction. The production of ramets through clonal propagation enables plants to move and occupy space near parent ramets, while seeds produced by sexual reproduction enable species to disperse and colonize open or disturbed sites both near and far from parents. The balance between clonal propagation and sexual reproduction is known to vary with plant density but few studies have focused on reproductive allocation with density changes in response to global climate change. Schoenoplectus americanus is a widespread clonal wetland species in North America and a dominant species in Chesapeake Bay brackish tidal wetlands. Long-term experiments on responses of S . americanus to global change provided the opportunity to compare the two modes of propagation under different treatments. Seed production increased with increasing shoot density, supporting the hypothesis that factors causing increased clonal reproduction (e.g., higher shoot density) stimulate sexual reproduction and dispersal of genets. The increase in allocation to sexual reproduction was mainly the result of an increase in the number of ramets that flowered and not an increase in the number of seeds per reproductive shoot, or the ratio between the number of flowers produced per inflorescence and the number of flowers that developed into seeds. Seed production increased in response to increasing temperatures and decreased or did not change in response to increased CO 2 or nitrogen. Results from this comparative study demonstrate that plant responses to global change treatments affect resource allocation and can alter the ability of species to produce seeds.

Rodríguez-Merino, A. 2023. Identifying and Managing Areas under Threat in the Iberian Peninsula: An Invasion Risk Atlas for Non-Native Aquatic Plant Species as a Potential Tool. Plants 12: 3069. https://doi.org/10.3390/plants12173069

Predicting the likelihood that non-native species will be introduced into new areas remains one of conservation’s greatest challenges and, consequently, it is necessary to adopt adequate management measures to mitigate the effects of future biological invasions. At present, not much information is available on the areas in which non-native aquatic plant species could establish themselves in the Iberian Peninsula. Species distribution models were used to predict the potential invasion risk of (1) non-native aquatic plant species already established in the peninsula (32 species) and (2) those with the potential to invade the peninsula (40 species). The results revealed that the Iberian Peninsula contains a number of areas capable of hosting non-native aquatic plant species. Areas under anthropogenic pressure are at the greatest risk of invasion, and the variable most related to invasion risk is temperature. The results of this work were used to create the Invasion Risk Atlas for Alien Aquatic Plants in the Iberian Peninsula, a novel online resource that provides information about the potential distribution of non-native aquatic plant species. The atlas and this article are intended to serve as reference tools for the development of public policies, management regimes, and control strategies aimed at the prevention, mitigation, and eradication of non-native aquatic plant species.

Calvente, A., A. P. Alves da Silva, D. Edler, F. A. Carvalho, M. R. Fantinati, A. Zizka, and A. Antonelli. 2023. Spiny but photogenic: amateur sightings complement herbarium specimens to reveal the bioregions of cacti. American Journal of Botany. https://doi.org/10.1002/ajb2.16235

Premise: Cacti are characteristic elements of the Neotropical flora and of major interest for biogeographic, evolutionary, and ecological studies. Here we test global biogeographic boundaries for Neotropical Cactaceae using specimen‐based occurrences coupled with data from visual observations, as a means to tackle the known collection biases in the family.MethodsSpecies richness and record density were assessed for preserved specimens and human observations and a bioregional scheme tailored to Cactaceae was produced using the interactive web application Infomap Bioregions based on data from 261,272 point records cleaned through automated and manual steps.Key ResultsWe find that areas in Mexico and southwestern USA, Eastern Brazil and along the Andean region have the greatest density of records and the highest species richness. Human observations complement information from preserved specimens substantially, especially along the Andes. We propose 24 cacti bioregions, among which the most species‐rich are: northern Mexico/southwestern USA, central Mexico, southern central Mexico, Central America, Mexican Pacific coast, central and southern Andes, northwestern Mexico/extreme southwestern USA, southwestern Bolivia, northeastern Brazil, Mexico/Baja California.ConclusionsThe bioregionalization proposed shows biogeographical boundaries specific to cacti, and can thereby aid further evolutionary, biogeographic, and ecological studies by providing a validated framework for further analyses. This classification builds upon, and is distinctive from, other expert‐derived regionalization schemes for other taxa. Our results showcase how observation data, including citizen‐science records, can complement traditional specimen‐based data for biogeographic research, particularly for taxa with specific specimen collection and preservation challenges and those that are threatened or internationally protected.This article is protected by copyright. All rights reserved.