Science Enabled by Specimen Data
Kebaïli, C., S. Sherpa, M. Guéguen, J. Renaud, D. Rioux, and L. Després. 2023. Comparative genetic and demographic responses to climate change in three peatland butterflies in the Jura massif. Biological Conservation 287: 110332. https://doi.org/10.1016/j.biocon.2023.110332
Climate is a main driver of species distributions, but all species are not equally affected by climate change, and their differential responses to similar climatic constraints might dramatically affect the local species composition. In the context of climate warming, a better knowledge of the ability of dispersal-limited and habitat-specialist species to track climate change at local scale is urgently needed. Comparing the population genetic and demographic impacts of past climate cycles in multiple co-distributed species with similar ecological requirements help predicting the community-scale response to climate warming, but such comparative studies remain rare. Here, we studied the relationship between demographic history and past changes in spatial distribution of three protected peatland butterfly species (Boloria aquilonaris, Coenonympha tullia, Lycaena helle) in the Jura massif (France), using a genomic approach (ddRAD sequencing) and species distribution modeling (SDM). We found a similar and narrow thermal niche among species, and shared demographic histories of post-glacial decline and recent fragmentation of populations. Each species functions as a single metapopulation at the regional scale, with a North-South gradient of decreasing genetic diversity that fits the local dynamics of the ice cover over time. However, we found no correlation between changes in the quantity or the quality of suitable areas and changes in effective population size over time. This suggests that species ranges moved beyond the Jura massif during the less favorable climatic periods, and/or that habitat loss and deterioration are major drivers of the current dramatic decline observed in the three species. Our findings allow better understanding how history events and contemporary dynamics shape local biodiversity, providing valuable knowledge to identify appropriate conservation strategies.
Andersen, M. K., Q. Willot, and H. A. MacMillan. 2023. A neurophysiological limit and its biogeographic correlations: Cold-induced spreading depolarization in tropical butterflies. Journal of Experimental Biology. https://doi.org/10.1242/jeb.246313
The physiology of insects is directly influenced by environmental temperature, and thermal tolerance is therefore intrinsically linked to their thermal niche and distribution. Understanding the mechanisms that limit insect thermal tolerance is crucial to predicting biogeography and range shifts. Recent studies on locusts and flies suggest that the critical thermal minimum (CTmin) follows from a loss of CNS function via a spreading depolarization. We hypothesized that other insect taxa share this phenomenon. Here we investigate whether spreading depolarization events occur in butterflies exposed to cold. Supporting our hypothesis, we find that exposure to stressful cold induced spreading depolarization in all 12 species tested. This reinforces the idea that spreading depolarization is a common mechanism underlying the insect CTmin. Furthermore, our results highlight how CNS function is tuned to match species’ environments. Further research into the physiology underlying spreading depolarization will likely elucidate key mechanisms determining insect thermal tolerance and ecology.
Kolanowska, M., S. Nowak, and A. Rewicz. 2022. Will Greenland be the last refuge for the continental European small-white orchid?Niche modeling of future distribution of Pseudorchis albida. Frontiers in Environmental Science 10. https://doi.org/10.3389/fenvs.2022.912428
Climate change affects populations of plants, animals, and fungi not only by direct modifications of their climatic niches but also by altering their ecological interactions. In this study, the future distribution of suitable habitats for the small-white orchid (Pseudorchis albida) was predicted using ecological niche modeling. In addition, the effect of global warming on the spatial distribution and availability of the pollen vectors of this species was evaluated. Due to the inconsistency in the taxonomic concepts of Pseudorchis albida, the differences in the climatic preferences of three proposed subspecies were investigated. Due to the overlap of both morphological and ecological characters of ssp. albida and ssp. tricuspis, they are considered to be synonyms, and the final analyses were carried out using ssp. albida s.l. and ssp. straminea. All of the models predict that with global warming, the number of suitable niches for these orchids will increase. This significant increase in preferred habitats is expected to occur in Greenland, but habitat loss in continental Europe will be severe. Within continental Europe, Pseudorchis albida ssp. albida will lose 44%–98% of its suitable niches and P. albida ssp. straminea will lose 46%–91% of its currently available habitats. An opposite effect of global warming was predicted for pollinators of P. albida s.l., and almost all insects studied will be subject to habitat loss. Still, within the predicted potential geographical ranges of the orchid studied, some pollen vectors are expected to occur, and these can support the long-term survival of the small-white orchid.
Moore, M. P., K. Hersch, C. Sricharoen, S. Lee, C. Reice, P. Rice, S. Kronick, et al. 2021. Sex-specific ornament evolution is a consistent feature of climatic adaptation across space and time in dragonflies. Proceedings of the National Academy of Sciences 118. https://doi.org/10.1073/pnas.2101458118
Adaptation to different climates fuels the origins and maintenance of biodiversity. Detailing how organisms optimize fitness for their local climates is therefore an essential goal in biology. Although we increasingly understand how survival-related traits evolve as organisms adapt to climatic condi…
Ritter, C. D., S. Faurby, D. J. Bennett, L. N. Naka, H. ter Steege, A. Zizka, Q. Haenel, et al. 2019. The pitfalls of biodiversity proxies: Differences in richness patterns of birds, trees and understudied diversity across Amazonia. Scientific Reports 9. https://doi.org/10.1038/s41598-019-55490-3
Most knowledge on biodiversity derives from the study of charismatic macro-organisms, such as birds and trees. However, the diversity of micro-organisms constitutes the majority of all life forms on Earth. Here, we ask if the patterns of richness inferred for macro-organisms are similar for micro-or…
Castañeda, S., F. Botello, V. Sánchez-Cordero, and S. Sarkar. 2019. Spatio-Temporal Distribution of Monarch Butterflies Along Their Migratory Route. Frontiers in Ecology and Evolution 7. https://doi.org/10.3389/fevo.2019.00400
Efforts to conserve the migratory phenomenon of monarch butterflies in eastern North America have increased since a 2013–2014 monitoring report documenting a historical population low at the Monarch Butterfly Biosphere Reserve in Mexico. Surprisingly, there have been few systematic attempts to devel…