Science Enabled by Specimen Data
Rodríguez-Merino, A. 2023. Identifying and Managing Areas under Threat in the Iberian Peninsula: An Invasion Risk Atlas for Non-Native Aquatic Plant Species as a Potential Tool. Plants 12: 3069. https://doi.org/10.3390/plants12173069
Predicting the likelihood that non-native species will be introduced into new areas remains one of conservation’s greatest challenges and, consequently, it is necessary to adopt adequate management measures to mitigate the effects of future biological invasions. At present, not much information is available on the areas in which non-native aquatic plant species could establish themselves in the Iberian Peninsula. Species distribution models were used to predict the potential invasion risk of (1) non-native aquatic plant species already established in the peninsula (32 species) and (2) those with the potential to invade the peninsula (40 species). The results revealed that the Iberian Peninsula contains a number of areas capable of hosting non-native aquatic plant species. Areas under anthropogenic pressure are at the greatest risk of invasion, and the variable most related to invasion risk is temperature. The results of this work were used to create the Invasion Risk Atlas for Alien Aquatic Plants in the Iberian Peninsula, a novel online resource that provides information about the potential distribution of non-native aquatic plant species. The atlas and this article are intended to serve as reference tools for the development of public policies, management regimes, and control strategies aimed at the prevention, mitigation, and eradication of non-native aquatic plant species.
McCulloch-Jones, E. J., T. Kraaij, N. Crouch, and K. T. Faulkner. 2023. Assessing the invasion risk of traded alien ferns using species distribution models. NeoBiota 87: 161–189. https://doi.org/10.3897/neobiota.87.101104
Risk analysis plays a crucial role in regulating and managing alien and invasive species but can be time-consuming and costly. Alternatively, combining invasion and impact history with species distribution models offers a cost-effective and time-efficient approach to assess invasion risk and identify species for which a comprehensive risk analysis should take precedence. We conducted such an assessment for six traded alien fern species, determining their invasion risk in countries where they are traded. Four of the species (Dicksonia antarctica, Dryopteris erythrosora, Lygodium japonicum, and Phlebodium aureum) showed limited global distributions, while Adiantum raddianum and Sphaeropteris cooperi had broader distributions. A. raddianum, however, was the only species found to pose a high invasion risk in two known trade countries – the USA and Australia – and requires a complete risk analysis to determine the appropriate regulatory responses. Dicksonia antarctica, Phlebodium aureum (for New Zealand), and Dryopteris erythrosora (for the USA) posed a medium risk of invasion due to the lack of evidence of impacts, and a complete risk analysis is thus deemed less crucial for these species in these countries. For other species, suitable environments were not predicted in the countries where they are traded, thus the risk of invasion is low, and a complete risk analysis is not required. For species in countries where suitable environments are predicted but no trade information or presence data are available, risk assessments are recommended to better determine the risk posed. Despite the relatively limited potential global distribution of the studied ferns relative to other major plant invaders (e.g., Pinus spp. and Acacia spp.), their history of invasion, documented impacts in pristine environments, and high propagule pressure from trade warrants concern, possibly necessitating legislative and regulatory measures in environmentally suitable regions.
Luza, A. L., A. V. Rodrigues, L. Mamalis, and V. Zulian. 2023. Spatial distribution of the greater rhea, Rhea americana (Linnaeus, 1758), in Rio Grande do Sul, southern Brazil: citizen-science data, probabilistic mapping, and comparison with expert knowledge. Ornithology Research. https://doi.org/10.1007/s43388-023-00143-3
The popularization of citizen-science platforms has increased the amount of data available in a fine spatial and temporal resolution, which can be used to fill distribution knowledge gaps through probabilistic maps. In this study, we gathered expert-based information and used species distribution models to produce two independent maps of the greater rhea ( Rhea americana , Rheiformes, Rheidae) distribution in the state of Rio Grande do Sul, Brazil. We integrated municipality level detection/non-detection data from five citizen-science datasets into a Bayesian site occupancy model, accounting for false negatives, sampling effort, habitat covariates, and spatial autocorrelation. We addressed whether habitat (grassland and crop field cover, number of rural properties) and spatial autocorrelation explains the realized occurrence of the species and compared model-based and expert-based occurrence maps. The mean estimated percentage of occupied municipalities was 48% (239 out of 497 municipalities), whereas experts declared 21% of the municipalities (103) as occupied by the species. While both mapping approaches showed greater rhea presence in most municipalities of the Pampa biome, they disagreed in the majority of the municipalities in the Atlantic Forest, where more fieldwork must be undertaken. The greater rhea distribution was exclusively explained by the spatial autocorrelation component, suggesting that the species expanded its distribution towards the north of the state, reaching the Atlantic Forest, following deforestation and agriculture expansion.
Freire-Fierro, A., F. Forest, D. S. Devey, J. F. B. Pastore, J. W. Horn, X.-J. Ge, Z. Wang, et al. 2023. Monnina (Polygalaceae), a New World monophyletic genus full of contrasts. Botanical Journal of the Linnean Society. https://doi.org/10.1093/botlinnean/boad026
Endemic to the Neotropics, Monnina is the second largest genus of Polygalaceae, yet little is known about its phylogenetic history, biogeography, and morphological character evolution. To address these knowledge gaps, we conducted Bayesian and maximum likelihood (ML) analyses of nuclear ITS and plastid trnL–F regions to test the monophyly of Monnina s.l. We used this phylogenetic framework to (i) infer divergence time estimates of lineages within the genus and reconstruct their historical biogeography; (ii) reconstruct the evolution of morphological characters of putative ecological and evolutionary importance in Monnina; and (iii) test for correlations between our phylogenetic hypothesis and environmental data. Our results reveal that Monnina is monophyletic with an indehiscent, 1–2-seeded fruit as a synapomorphy for the genus. We identify six clades within Monnina based on our combined phylogenetic results: Clades A, B, and D are primarily distributed in southern and eastern South America, Clades C and E are primarily Central Andean, and Clade F is chiefly distributed in the Northern Andes and Central America. The ancestor of the Monnina stem lineage dispersed from Australia/Africa to South America during the late Eocene to early Oligocene. The divergences of major lineages within the genus began in the early Miocene. We inferred the most recent common ancestor of Monnina to be an herbaceous plant with one-seeded samaroid fruits. The origins of fleshy fruits and shrubby habits are phylogenetically correlated within Monnina, and their concerted convergent evolution may have promoted increased net diversification rates in the two most species-rich subclades of the genus.
FEDONIUK, T. P., and О. V. SKYDAN. 2023. INCORPORATING GEOGRAPHIC INFORMATION TECHNOLOGIES INTO A FRAMEWORK FOR BIOLOGICAL DIVERSITY CONSERVATION AND PREVENTING BIOLOGICAL THREATS TO LANDSCAPES. Kosmìčna nauka ì tehnologìâ 29: 10–21. https://doi.org/10.15407/knit2023.02.010
As the long-term sustainability of both natural and artificial phytocenoses is under serious threat from biological invaders, the global community is working hard to prevent invasions and rapidly eradicate or halt the spread of invasive species. By tracking the actual spread of “invaders” or predicting areas at risk of invasion, geographic information systems (GIS) and remote sensing of the Earth (RSE) can significantly assist the process of ensuring biosecurity at the state level. Research has shown the potential of remote sensing and GIS applications for invasive species mapping and modeling, even though it is currently restricted to a small number of taxa. This article gives examples of how GIS and RSE can be used to track invasive species like Utricularia australis R. br. and Lemna aequinoctialis Welw. To describe the distribution of species, current Internet databases of species distribution and the author’s own research were used. It also talks about promising ways to find and track the spread of invasive species, like using NDVI indices, chlorophyll and xanthophyll content to find changes in regional biodiversity, some problems with finding changes in biodiversity in agricultural landscapes, and mapping invasion risk. The study also demonstrates how GIS technology may be used to identify agricultural landscape biodiversity using radiometric space data from Sentinel 1, followed by a verification of the findings. The prospects of spatial, spectral, and temporal analysis of images are determined, as they make it possible to outline the boundaries of ecosystems, biometric characteristics of species, characteristics of their current and potential areas of distribution, etc.
Geier, C., J. M. Bouchal, S. Ulrich, D. Uhl, T. Wappler, S. Wedmann, R. Zetter, et al. 2023. Potential pollinators and paleoecological aspects of Eocene Ludwigia (Onagraceae) from Eckfeld, Germany. Palaeoworld. https://doi.org/10.1016/j.palwor.2023.07.003
Paleogene flower-insect interactions and paleo-pollination processes are, in general, poorly understood and fossil evidence for such floral and faunal interactions are rarely reported. To shed light on angiosperm flower-insect interactions, we investigated several hundred fossil flowers and insects from the middle Eocene Fossil Lagerstätte of Eckfeld, Germany. During our work, we discovered a unique fossil Ludwigia flower (bud) with in situ pollen. The ecological preferences (climate, biome, habitat, etc.) of extant Ludwigia and the paleoecological configurations of the fossil plant assemblage support the taxonomic affiliation of the flower bud and an Eocene presence of Ludwigia in the vicinity of the former Lake Eckfeld. Today’s Ludwigia are mostly pollinated by Hymenoptera (bees). Therefore, we screened all currently known hymenopteran fossils from Eckfeld but found no Ludwigia pollen adhering to any of the specimens. On the contrary, we discovered Ludwigia pollen adhering to two different groups of Coleoptera (beetles). Our study suggests that during the Eocene of Europe, Ludwigia flowers were visited and probably pollinated by beetles and over time there was a shift in primary flower visitors/pollinators, from beetles to bees, sometime during the late Paleogene to Neogene.
Maurin, O., A. Anest, F. Forest, I. Turner, R. L. Barrett, R. C. Cowan, L. Wang, et al. 2023. Drift in the tropics: Phylogenetics and biogeographical patterns in Combretaceae. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13737
Aim The aim of this study was to further advance our understanding of the species-rich, and ecologically important angiosperm family Combretaceae to provide new insights into their evolutionary history. We assessed phylogenetic relationships in the family using target capture data and produced a dated phylogenetic tree to assess fruit dispersal modes and patterns of distribution. Location Tropical and subtropical regions. Time Period Cretaceous to present. Major Taxa Studied Family Combretaceae is a member of the rosid clade and comprises 10 genera and more than 500 species, predominantly assigned to genera Combretum and Terminalia, and occurring on all continents and in a wide range of ecosystems. Methods We use a target capture approach and the Angiosperms353 universal probes to reconstruct a robust dated phylogenetic tree for the family. This phylogenetic framework, combined with seed dispersal traits, biome data and biogeographic ranges, allows the reconstruction of the biogeographical history of the group. Results Ancestral range reconstructions suggest a Gondwanan origin (Africa/South America), with several intercontinental dispersals within the family and few transitions between biomes. Relative abundance of fruit dispersal types differed by both continent and biome. However, intercontinental colonizations were only significantly enhanced by water dispersal (drift fruit), and there was no evidence that seed dispersal modes influenced biome shifts. Main Conclusions Our analysis reveals a paradox as drift fruit greatly enhanced dispersal distances at intercontinental scale but did not affect the strong biome conservatism observed.
Poore, C., N. A. Jud, and M. A. Gandolfo. 2023. Fossil fruits from the early Paleocene of Patagonia, Argentina reveal west Gondwanan history of Icacinaceae. Review of Palaeobotany and Palynology: 104940. https://doi.org/10.1016/j.revpalbo.2023.104940
Phytocreneae (Icacinaceae) are a tribe of climbing plants distributed throughout tropical Afro-Eurasia and Papua New Guinea. There is a rich Cenozoic fossil record of the group with occurrences on all continents except Antarctica. Fossil evidence supports a Cretaceous origin but the biogeographic history of Phytocreneae remains unclear. We examined a silicified endocarp collected from the Danian (early Paleocene) Salamanca Formation at the Estancia Las Violetas locality. We investigated the internal structure using micro-CT scanning and compared the fossil with fruits of other living and fossil species. Finally, we explored the biogeographic history of the tribe graphically and discuss the implications of this discovery. The endocarp belongs to the fossil genus Palaeophytocrene. This new occurrence significantly expands the known geographic range of Phytocreneae in South America. Furthermore, this is the oldest (ca. 63 Ma) unequivocal evidence of the tribe in the southern hemisphere. The presence of Phytocreneae at Estancia Las Violetas confirms that these lianas occurred in mid-latitude forests by the early Paleocene, and it also reveals that the tribe likely survived the end-Cretaceous extinction event in southern South America. Future work on the tribe should include filling gaps in the Gondwanan record to test the hypothesis that Australasian lineages are related to American lineages via high-latitude dispersal.
Lopes, D., E. de Andrade, A. Egartner, F. Beitia, M. Rot, C. Chireceanu, V. Balmés, et al. 2023. FRUITFLYRISKMANAGE: A Euphresco project for Ceratitis capitata Wiedemann (Diptera: Tephritidae) risk management applied in some European countries. EPPO Bulletin. https://doi.org/10.1111/epp.12922
Ceratitis capitata (Wiedemann), the Mediterranean fruit fly or medfly, is one of the world's most serious threats to fresh fruits. It is highly polyphagous (recorded from over 300 hosts) and capable of adapting to a wide range of climates. This pest has spread to the EPPO region and is mainly present in the southern part, damaging Citrus and Prunus. In Northern and Central Europe records refer to interceptions or short‐lived adventive populations only. Sustainable programs for surveillance, spread assessment using models and control strategies for pests such as C. capitata represent a major plant health challenge for all countries in Europe. This article includes a review of pest distribution and monitoring techniques in 11 countries of the EPPO region. This work compiles information that was crucial for a better understanding of pest occurrence and contributes to identifying areas susceptible to potential invasion and establishment. The key outputs and results obtained in the Euphresco project included knowledge transfer about early detection tools and methods used in different countries for pest monitoring. A MaxEnt software model resulted in risk maps for C. capitata in different climatic regions. This is an important tool to help decision making and to develop actions against this pest in the different partner countries.
Kor, L., and M. Diazgranados. 2023. Identifying important plant areas for useful plant species in Colombia. Biological Conservation 284: 110187. https://doi.org/10.1016/j.biocon.2023.110187
While area-based approaches continue to dominate biodiversity conservation, there is growing recognition of the importance of the human dimensions of biodiversity. We applied the Important Plant Areas (IPA) approach in Colombia to identify key sites for the conservation of plant species with reported human uses. Drawing on the Checklist of Useful Plants of Colombia, we collated 1,045,889 clean occurrence records for 5400 native species from global data repositories and digitized herbaria. Through analysis based on regionalized grid cells, we identified 980 sites meeting IPA thresholds. These are primarily located in forest habitats, with only 19.8 % within existing national natural parks or internationally designated conservation areas. Grid cells were transformed to polygons based on overlapping ecosystems and administrative boundaries to form more meaningful site boundaries. A subsequent two-stage ranking procedure based on conservation value and richness found 46 sites to be of high priority, with 10 selected as top priorities for further investigation and conservation action. These 10 sites support significant populations of 33 threatened useful plant species and represent six of the 13 bioregions of Colombia in just 0.27 % of its land area. To progress from potential to confirmed IPAs, targeted fieldwork is required alongside stakeholder engagement and consultation, crucially involving local resource users. As a megadiverse country ranked second in the world for its botanical richness, effective IPA management would not only contribute to Colombian targets for sustainable development and conservation but would also support global targets to recover biodiversity for both planet and people.