Science Enabled by Specimen Data

Clement, R. A., Saxton, N. A., Standring, S., Arnold, P. R., Johnson, K. K., Bybee, D. R., & Bybee, S. M. (2021). Phylogeny, migration and geographic range size evolution of Anax dragonflies (Anisoptera: Aeshnidae). Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlab046 https://doi.org/10.1093/zoolinnean/zlab046

The genus Anax is a group of cosmopolitan dragonflies noted for its conspicuous migratory behaviours and large size. Here we present the first dated, species-level, multigene, molecular phylogeny for the group to test generic and species-limits, as well as the evolution of migration and range size. …

Hambuckers, A., de Harenne, S., Rocha Ledezma, E., Zúñiga Zeballos, L., & François, L. (2021). Predicting the Future Distribution of Ara rubrogenys, an Endemic Endangered Bird Species of the Andes, Taking into Account Trophic Interactions. Diversity, 13(2), 94. doi:10.3390/d13020094 https://doi.org/10.3390/d13020094

Species distribution models (SDMs) are commonly used with climate only to predict animal distribution changes. This approach however neglects the evolution of other components of the niche, like food resource availability. SDMs are also commonly used with plants. This also suffers limitations, notab…

Iannella, M., D’Alessandro, P., & Biondi, M. (2019). Entomological knowledge in Madagascar by GBIF datasets: estimates on the coverage and possible biases (Insecta). Fragmenta Entomologica, 51(1), 1–10. doi:10.4081/fe.2019.329 https://doi.org/10.4081/fe.2019.329

Although Madagascar is one of the world’s most important biodiversity hotspots, the knowledge of its faunistic diversity is still incomplete, notwithstanding many field campaigns were organized since the 17th century until nowadays, leading to a huge number of vertebrate and invertebrate records. In…

Park, D. S., & Razafindratsima, O. H. (2018). Anthropogenic threats can have cascading homogenizing effects on the phylogenetic and functional diversity of tropical ecosystems. Ecography, 42(1), 148–161. doi:10.1111/ecog.03825 https://doi.org/10.1111/ecog.03825

Determining the mechanisms that underlie species distributions and assemblages is necessary to effectively preserve biodiversity. This cannot be accomplished by examining a single taxonomic group, as communities comprise a plethora of interactions across species and trophic levels. Here, we examine …