Science Enabled by Specimen Data

Pérez‐Navarro, M. Á., Serra‐Diaz, J. M., Svenning, J., Esteve‐Selma, M. Á., Hernández‐Bastida, J., & Lloret, F. (2021). Extreme drought reduces climatic disequilibrium in dryland plant communities. Oikos. doi:10.1111/oik.07882 https://doi.org/10.1111/oik.07882

High rates of climate change are currently exceeding many plant species' capacity to keep up with climate, leading to mismatches between climatic conditions and climatic preferences of the species present in a community. This disequilibrium between climate and community composition could diminish, h…

Yi, S., Jun, C.-P., Jo, K., Lee, H., Kim, M.-S., Lee, S. D., … Lim, J. (2020). Asynchronous multi-decadal time-scale series of biotic and abiotic responses to precipitation during the last 1300 years. Scientific Reports, 10(1). doi:10.1038/s41598-020-74994-x https://doi.org/10.1038/s41598-020-74994-x

Loading...

Larridon, I., Galán Díaz, J., Bauters, K., & Escudero, M. (2020). What drives diversification in a pantropical plant lineage with extraordinary capacity for long‐distance dispersal and colonization? Journal of Biogeography. doi:10.1111/jbi.13982 https://doi.org/10.1111/jbi.13982

Aim: Colonization of new areas may entail shifts in diversification rates linked to biogeographical movement (dispersification), which may involve niche evolution if species were not exapted to new environments. Scleria (Cyperaceae) includes c. 250 species and has a pantropical distribution suggesti…

Lake, T. A., Briscoe Runquist, R. D., & Moeller, D. A. (2020). Predicting range expansion of invasive species: Pitfalls and best practices for obtaining biologically realistic projections. Diversity and Distributions, 26(12), 1767–1779. doi:10.1111/ddi.13161 https://doi.org/10.1111/ddi.13161

Aim: Species distribution models (SDMs) are widely used to forecast potential range expansion of invasive species. However, invasive species occurrence datasets often have spatial biases that may violate key SDM assumptions. In this study, we examined alternative methods of spatial bias correction a…

Cross, A. T., Krueger, T. A., Gonella, P. M., Robinson, A. S., & Fleischmann, A. S. (2020). Conservation of carnivorous plants in the age of extinction. Global Ecology and Conservation, e01272. doi:10.1016/j.gecco.2020.e01272 https://doi.org/10.1016/j.gecco.2020.e01272

Carnivorous plants (CPs)—those possessing specific strategies to attract, capture and kill animal prey and obtain nutrition through the absorption of their biomass—are harbingers of anthropogenic degradation and destruction of ecosystems. CPs exhibit highly specialised and often very sensitive ecolo…

Chevalier, M., Chase, B. M., Quick, L. J., Dupont, L. M., & Johnson, T. C. (2020). Temperature change in subtropical southeastern Africa during the past 790,000 yr. Geology. doi:10.1130/g47841.1 https://doi.org/10.1130/G47841.1

Across the glacial-interglacial cycles of the late Pleistocene (~700 k.y.), temperature variability at low latitudes is often considered to have been negligible compared to changes in precipitation. However, a paucity of quantified temperature records makes this difficult to reliably assess. In this…

Tan, K., Lu, T., & Ren, M.-X. (2020). Biogeography and evolution of Asian Gesneriaceae based on updated taxonomy. PhytoKeys, 157, 7–26. doi:10.3897/phytokeys.157.34032 https://doi.org/10.3897/phytokeys.157.34032

Based on an updated taxonomy of Gesneriaceae, the biogeography and evolution of the Asian Gesneriaceae are outlined and discussed. Most of the Asian Gesneriaceae belongs to Didymocarpoideae, except Titanotrichum was recently moved into Gesnerioideae. Most basal taxa of the Asian Gesneriaceae are fou…

De Jesús Hernández-Hernández, M., Cruz, J. A., & Castañeda-Posadas, C. (2020). Paleoclimatic and vegetation reconstruction of the miocene southern Mexico using fossil flowers. Journal of South American Earth Sciences, 104, 102827. doi:10.1016/j.jsames.2020.102827 https://doi.org/10.1016/j.jsames.2020.102827

Concern about the course of the current environmental problems has raised interest in investigating the different scenarios that have taken place in our planet throughout time. To that end, different methodologies have been employed in order to determine the different variables that compose the envi…

Bellot, S., Bayton, R. P., Couvreur, T. L. P., Dodsworth, S., Eiserhardt, W. L., Guignard, M. S., … Baker, W. J. (2020). On the origin of giant seeds: the macroevolution of the double coconut ( Lodoicea maldivica ) and its relatives (Borasseae, Arecaceae). New Phytologist. doi:10.1111/nph.16750 https://doi.org/10.1111/nph.16750

Seed size shapes plant evolution and ecosystems, and may be driven by plant size and architecture, dispersers, habitat and insularity. How these factors influence the evolution of giant seeds is unclear, as are the rate of evolution and the biogeographical consequences of giant seeds. We generated D…

Jahanshiri, E., Mohd Nizar, N. M., Tengku Mohd Suhairi, T. A. S., Gregory, P. J., Mohamed, A. S., Wimalasiri, E. M., & Azam-Ali, S. N. (2020). A Land Evaluation Framework for Agricultural Diversification. Sustainability, 12(8), 3110. doi:10.3390/su12083110 https://doi.org/10.3390/su12083110

Shortlisting ecologically adaptable plant species can be a starting point for agricultural diversification projects. We propose a rapid assessment framework based on an ecological model that can accelerate the evaluation of options for sustainable crop diversification. To test the new model, expert-…