Science Enabled by Specimen Data
Reichgelt, T., A. Baumgartner, R. Feng, and D. A. Willard. 2023. Poleward amplification, seasonal rainfall and forest heterogeneity in the Miocene of the eastern USA. Global and Planetary Change 222: 104073. https://doi.org/10.1016/j.gloplacha.2023.104073
Paleoclimate reconstructions can provide a window into the environmental conditions in Earth history when atmospheric carbon dioxide concentrations were higher than today. In the eastern USA, paleoclimate reconstructions are sparse, because terrestrial sedimentary deposits are rare. Despite this, the eastern USA has the largest population and population density in North America, and understanding the effects of current and future climate change is of vital importance. Here, we provide terrestrial paleoclimate reconstructions of the eastern USA from Miocene fossil floras. Additionally, we compare proxy paleoclimate reconstructions from the warmest period in the Miocene, the Miocene Climatic Optimum (MCO), to those of an MCO Earth System Model. Reconstructed Miocene temperatures and precipitation north of 35°N are higher than modern. In contrast, south of 35°N, temperatures and precipitation are similar to today, suggesting a poleward amplification effect in eastern North America. Reconstructed Miocene rainfall seasonality was predominantly higher than modern, regardless of latitude, indicating greater variability in intra-annual moisture transport. Reconstructed climates are almost uniformly in the temperate seasonal forest biome, but heterogeneity of specific forest types is evident. Reconstructed Miocene terrestrial temperatures from the eastern USA are lower than modeled temperatures and coeval Atlantic sea surface temperatures. However, reconstructed rainfall is consistent with modeled rainfall. Our results show that during the Miocene, climate was most different from modern in the northeastern states, and may suggest a drastic reduction in the meridional temperature gradient along the North American east coast compared to today.
Alkhalifah, D. H. M., E. Damra, M. B. Melhem, and W. N. Hozzein. 2023. Fungus under a Changing Climate: Modeling the Current and Future Global Distribution of Fusarium oxysporum Using Geographical Information System Data. Microorganisms 11: 468. https://doi.org/10.3390/microorganisms11020468
The impact of climate change on biodiversity has been the subject of numerous research in recent years. The multiple elements of climate change are expected to affect all levels of biodiversity, including microorganisms. The common worldwide fungus Fusarium oxysporum colonizes plant roots as well as soil and several other substrates. It causes predominant vascular wilt disease in different strategic crops such as banana, tomato, palm, and even cotton, thereby leading to severe losses. So, a robust maximum entropy algorithm was implemented in the well-known modeling program Maxent to forecast the current and future global distribution of F. oxysporum under two representative concentration pathways (RCPs 2.6 and 8.5) for 2050 and 2070. The Maxent model was calibrated using 1885 occurrence points. The resulting models were fit with AUC and TSS values equal to 0.9 (±0.001) and 0.7, respectively. Increasing temperatures due to global warming caused differences in habitat suitability between the current and future distributions of F. oxysporum, especially in Europe. The most effective parameter of this fungus distribution was the annual mean temperature (Bio 1); the two-dimensional niche analysis indicated that the fungus has a wide precipitation range because it can live in both dry and rainy habitats as well as a range of temperatures in which it can live to certain limits. The predicted shifts should act as an alarm sign for decision makers, particularly in countries that depend on such staple crops harmed by the fungus.
Ramírez, F., V. Sbragaglia, K. Soacha, M. Coll, and J. Piera. 2022. Challenges for Marine Ecological Assessments: Completeness of Findable, Accessible, Interoperable, and Reusable Biodiversity Data in European Seas. Frontiers in Marine Science 8. https://doi.org/10.3389/fmars.2021.802235
The ongoing contemporary biodiversity crisis may result in much of ocean’s biodiversity to be lost or deeply modified without even being known. As the climate and anthropogenic-related impacts on marine systems accelerate, biodiversity knowledge integration is urgently required to evaluate and monit…
Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885
The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…
TREVIÑO-ZEVALLOS, I., I. GARCÍA-CUNCHILLOS, and C. LADO. 2021. New records of Myxomycetes (Amoebozoa) from the tropical Andes. Phytotaxa 522: 231–239. https://doi.org/10.11646/phytotaxa.522.3.6
The Myxomycetes comprise a remarkably diverse group of organisms within Amoebozoa, with over 1000 species currently recognized. These organisms, at the end of their life cycles produce fruiting bodies which are the basis for their systematics. Despite being a biodiversity hotspot, the tropical Andes…
Allstädt, F. J., A. Koutsodendris, E. Appel, W. Rösler, T. Reichgelt, S. Kaboth-Bahr, A. A. Prokopenko, and J. Pross. 2021. Late Pliocene to early Pleistocene climate dynamics in western North America based on a new pollen record from paleo-Lake Idaho. Palaeobiodiversity and Palaeoenvironments 101: 177–195. https://doi.org/10.1007/s12549-020-00460-1
Marked by the expansion of ice sheets in the high latitudes, the intensification of Northern Hemisphere glaciation across the Plio/Pleistocene transition at ~ 2.7 Ma represents a critical interval of late Neogene climate evolution. To date, the characteristics of climate change in North America duri…
Deanna, R., P. Wilf, and M. A. Gandolfo. 2020. New physaloid fruit‐fossil species from early Eocene South America. American Journal of Botany 107: 1749–1762. https://doi.org/10.1002/ajb2.1565
Premise: Solanaceae is a scientifically and economically important angiosperm family with a minimal fossil record and an intriguing early evolutionary history. Here, we report a newly discovered fossil lantern fruit with a suite of features characteristic of Physalideae within Solanaceae. The fossil…
Lindelof, K., J. A. Lindo, W. Zhou, X. Ji, and Q. (Jenny) Xiang. 2020. Phylogenomics, biogeography, and evolution of the blue‐ or white‐fruited dogwoods (Cornus)—Insights into morphological and ecological niche divergence following intercontinental geographic isolation. Journal of Systematics and Evolution 58: 604–645. https://doi.org/10.1111/jse.12676
The eastern Asian (EA)–eastern North American (ENA) floristic disjunction represents a major pattern of phytogeography of the Northern Hemisphere. Despite 20 years of studies dedicated to identification of taxa that display this disjunct pattern, its origin and evolution remain an open question, esp…
Jahanshiri, E., N. M. Mohd Nizar, T. A. S. Tengku Mohd Suhairi, P. J. Gregory, A. S. Mohamed, E. M. Wimalasiri, and S. N. Azam-Ali. 2020. A Land Evaluation Framework for Agricultural Diversification. Sustainability 12: 3110. https://doi.org/10.3390/su12083110
Shortlisting ecologically adaptable plant species can be a starting point for agricultural diversification projects. We propose a rapid assessment framework based on an ecological model that can accelerate the evaluation of options for sustainable crop diversification. To test the new model, expert-…
van Treuren, R., R. Hoekstra, R. Wehrens, and T. van Hintum. 2020. Effects of climate change on the distribution of crop wild relatives in the Netherlands in relation to conservation status and ecotope variation. Global Ecology and Conservation 23: e01054. https://doi.org/10.1016/j.gecco.2020.e01054
Crop wild relatives (CWR) are wild plant taxa that are genetically related to a cultivated species and are considered rich sources of useful traits for crop improvement. CWR are generally underrepresented in genebanks, while their survival in nature is not guaranteed. Inventories and risk analyses a…