Science Enabled by Specimen Data

Zhang, Q., J. Ye, C. Le, D. M. Njenga, N. R. Rabarijaona, W. O. Omollo, L. Lu, et al. 2022. New insights into the formation of biodiversity hotspots of the Kenyan flora. Diversity and Distributions. https://doi.org/10.1111/ddi.13624

Aim This study aimed to investigate the distribution patterns of plant diversity in Kenya, how climatic fluctuations and orogeny shaped them, and the formation of its β-diversity. Location Kenya, East Africa. Taxon Angiosperms. Methods We quantified patterns of turnover and nestedness components of phylogenetic β-diversity for angiosperm species among neighbouring sites using a well-resolved phylogenetic tree and extensive distribution records from public databases and other published sources. We applied clustering methods to delineate biota based on pairwise similarities among multiple sites and used a random assembly null model to assess the effects of species abundance distribution on phylogenetic β-diversity. Results The phylogenetic turnover of the Kenyan flora, intersecting with the biodiversity hotspots Eastern Afromontane, Coastal Forests of Eastern Africa, and Horn of Africa, shows a non-monotonic pattern along a latitudinal gradient that is strongly structured into volcanic and coastal areas. The other areas are mainly dominated by phylogenetic nestedness, even in the eastern part of the equatorial region parallel to the volcanic area. Phylogenetic diversity and phylogenetic structure analyses explain the mechanism of the observed phylogenetic turnover and nestedness patterns. We identified five phytogeographical regions in Kenya: the Mandera, Turkana, Volcanic, Pan Coastal and West Highland Regions. Conclusions Variations in turnover gradient and coexistence are highly dependent on the regional biogeographical history resulting from climatic fluctuations and long-lasting orogeny, which jointly shaped the biodiversity patterns of the Kenyan flora. The nestedness component dominated climatically unstable regions and is presumed to have been caused by heavy local species extinction and recolonization from the Volcanic Region. The high turnover component in climatically stable regions may have preserved old lineages and the prevalence of endemic species within narrow ranges.

Sáenz-Ceja, J. E., J. T. Sáenz-Reyes, and D. Castillo-Quiroz. 2022. Pollinator Species at Risk from the Expansion of Avocado Monoculture in Central Mexico. Conservation 2: 457–472. https://doi.org/10.3390/conservation2030031

The monoculture of avocado (Persea americana) has triggered the loss of large forested areas in central Mexico, including the habitat of threatened species. This study assessed the potential habitat loss of ten threatened pollinator species due to the expansion of avocado monoculture in Mexico. First, we modeled the distribution of avocado and pollinators. Then, we overlapped their suitable areas at a national level and within the Trans-Mexican Volcanic Belt (TMVB). We also identified the areas with more affected pollinators and coinciding with protected areas. As a result, 78% of the suitable areas for avocado coincided with the distribution of at least one pollinator. Although only two pollinators lost more than one-fifth of their distribution at a national level, the habitat loss increased to 41.6% on average, considering their distribution within the TMVB. The most affected pollinators were Bombus brachycephalus, B diligens, Danaus plexippus, and Tilmatura dupontii, losing more than 48% of their distribution within this ecoregion. The areas with a greater number of affected species pollinators were found in the states of Michoacán, Mexico, and Morelos, where most of the area is currently unprotected. Our results suggest that the expansion of the avocado monoculture will negatively affect the habitat of threatened pollinators in Mexico.

Xie, Y., H. T. Thammavong, and D. S. Park. 2022. The ecological implications of intra‐ and inter‐species variation in phenological sensitivity. New Phytologist. https://doi.org/10.1111/nph.18361

●Plant‐pollinator mutualisms rely upon the synchrony of interacting taxa. Climate change can disrupt this synchrony as phenological responses to climate vary within and across species. However, intra‐ and interspecific variation in phenological responses is seldom considered simultaneously, limiting our understanding of climate change impacts on interactions among taxa across their ranges.●We investigated how variation in phenological sensitivity to climate can alter ecological interactions simultaneously within and among species using natural history collections and citizen science data. We focus on a unique system, comprising a wide‐ranged spring ephemeral with varying color morphs (Claytonia virginica) and its specialist bee pollinator (Andrena erigeniae).●We found strongly opposing trends in the phenological sensitivities of plants versus their pollinators. Flowering phenology was more sensitive to temperature in warmer regions, whereas bee phenology was more responsive in colder regions. Phenological sensitivity varied across flower color morphs. Temporal synchrony between flowering and pollinator activity were predicted to change heterogeneously across the species’ ranges in the future.●Our work demonstrates the complexity and fragility of ecological interactions in time and the necessity of incorporating variation in phenological responses across multiple axes to understand how such interactions will change in the future.

Boyd, R. J., M. A. Aizen, R. M. Barahona‐Segovia, L. Flores‐Prado, F. E. Fontúrbel, T. M. Francoy, M. Lopez‐Aliste, et al. 2022. Inferring trends in pollinator distributions across the Neotropics from publicly available data remains challenging despite mobilization efforts Y. Fourcade [ed.],. Diversity and Distributions 28: 1404–1415. https://doi.org/10.1111/ddi.13551

Aim Aggregated species occurrence data are increasingly accessible through public databases for the analysis of temporal trends in the geographic distributions of species. However, biases in these data present challenges for statistical inference. We assessed potential biases in data available through GBIF on the occurrences of four flower-visiting taxa: bees (Anthophila), hoverflies (Syrphidae), leaf-nosed bats (Phyllostomidae) and hummingbirds (Trochilidae). We also assessed whether and to what extent data mobilization efforts improved our ability to estimate trends in species' distributions. Location The Neotropics. Methods We used five data-driven heuristics to screen the data for potential geographic, temporal and taxonomic biases. We began with a continental-scale assessment of the data for all four taxa. We then identified two recent data mobilization efforts (2021) that drastically increased the quantity of records of bees collected in Chile available through GBIF. We compared the dataset before and after the addition of these new records in terms of their biases and estimated trends in species' distributions. Results We found evidence of potential sampling biases for all taxa. The addition of newly-mobilized records of bees in Chile decreased some biases but introduced others. Despite increasing the quantity of data for bees in Chile sixfold, estimates of trends in species' distributions derived using the postmobilization dataset were broadly similar to what would have been estimated before their introduction, albeit more precise. Main conclusions Our results highlight the challenges associated with drawing robust inferences about trends in species' distributions using publicly available data. Mobilizing historic records will not always enable trend estimation because more data do not necessarily equal less bias. Analysts should carefully assess their data before conducting analyses: this might enable the estimation of more robust trends and help to identify strategies for effective data mobilization. Our study also reinforces the need for targeted monitoring of pollinators worldwide.

Ramirez-Villegas, J., C. K. Khoury, H. A. Achicanoy, M. V. Diaz, A. C. Mendez, C. C. Sosa, Z. Kehel, et al. 2022. State of ex situ conservation of landrace groups of 25 major crops. Nature Plants 8: 491–499. https://doi.org/10.1038/s41477-022-01144-8

Crop landraces have unique local agroecological and societal functions and offer important genetic resources for plant breeding. Recognition of the value of landrace diversity and concern about its erosion on farms have led to sustained efforts to establish ex situ collections worldwide. The degree to which these efforts have succeeded in conserving landraces has not been comprehensively assessed. Here we modelled the potential distributions of eco-geographically distinguishable groups of landraces of 25 cereal, pulse and starchy root/tuber/fruit crops within their geographic regions of diversity. We then analysed the extent to which these landrace groups are represented in genebank collections, using geographic and ecological coverage metrics as a proxy for genetic diversity. We find that ex situ conservation of landrace groups is currently moderately comprehensive on average, with substantial variation among crops; a mean of 63% ± 12.6% of distributions is currently represented in genebanks. Breadfruit, bananas and plantains, lentils, common beans, chickpeas, barley and bread wheat landrace groups are among the most fully represented, whereas the largest conservation gaps persist for pearl millet, yams, finger millet, groundnut, potatoes and peas. Geographic regions prioritized for further collection of landrace groups for ex situ conservation include South Asia, the Mediterranean and West Asia, Mesoamerica, sub-Saharan Africa, the Andean mountains of South America and Central to East Asia. With further progress to fill these gaps, a high degree of representation of landrace group diversity in genebanks is feasible globally, thus fulfilling international targets for their ex situ conservation. By analysing the state of representation of traditional varieties of 25 major crops in ex situ repositories, this study demonstrates conservation progress made over more than a half-century and identifies the gaps remaining to be filled.

Belitz, M. W., V. Barve, J. R. Doby, M. M. Hantak, E. A. Larsen, D. Li, J. A. Oswald, et al. 2021. Climate drivers of adult insect activity are conditioned by life history traits C. Scherber [ed.],. Ecology Letters 24: 2687–2699. https://doi.org/10.1111/ele.13889

Insect phenological lability is key for determining which species will adapt under environmental change. However, little is known about when adult insect activity terminates and overall activity duration. We used community‐science and museum specimen data to investigate the effects of climate and urbanisation on timing of adult insect activity for 101 species varying in life history traits. We found detritivores and species with aquatic larval stages extend activity periods most rapidly in response to increasing regional temperature. Conversely, species with subterranean larval stages have relatively constant durations regardless of regional temperature. Species extended their period of adult activity similarly in warmer conditions regardless of voltinism classification. Longer adult durations may represent a general response to warming, but voltinism data in subtropical environments are likely underreported. This effort provides a framework to address the drivers of adult insect phenology at continental scales and a basis for predicting species response to environmental change.

Li, D., Z. Li, Z. Liu, Y. Yang, A. G. Khoso, L. Wang, and D. Liu. 2022. Climate change simulations revealed potentially drastic shifts in insect community structure and crop yields in China’s farmland. Journal of Pest Science. https://doi.org/10.1007/s10340-022-01479-3

Climate change will cause drastic fluctuations in agricultural ecosystems, which in turn may affect global food security. We used ecological niche modeling to predict the potential distribution for four cereal aphids (i.e., Sitobion avenae, Rhopalosiphum padi, Schizaphis graminum, and Diurphis noxia…

Vasconcelos, T., J. D. Boyko, and J. M. Beaulieu. 2021. Linking mode of seed dispersal and climatic niche evolution in flowering plants. Journal of Biogeography. https://doi.org/10.1111/jbi.14292

Aim: Due to the sessile nature of flowering plants, movements to new geographical areas occur mainly during seed dispersal. Frugivores tend to be efficient dispersers because animals move within the boundaries of their preferable niches, so seeds are more likely to be transported to environments tha…

Wham, B. E., S. R. Rahman, M. Martinez‐Correa, and H. M. Hines. 2021. Mito‐nuclear discordance at a mimicry color transition zone in bumble bee Bombus melanopygus. Ecology and Evolution 11: 18151–18168. https://doi.org/10.1002/ece3.8412

As hybrid zones exhibit selective patterns of gene flow between otherwise distinct lineages, they can be especially valuable for informing processes of microevolution and speciation. The bumble bee, Bombus melanopygus, displays two distinct color forms generated by Müllerian mimicry: a northern “Roc…

Sirois‐Delisle, C., and J. T. Kerr. 2021. Climate change aggravates non‐target effects of pesticides on dragonflies at macroecological scales. Ecological Applications 32. https://doi.org/10.1002/eap.2494

Critical gaps in understanding how species respond to environmental change limit our capacity to address conservation risks in a timely way. Here, we examine the direct and interactive effects of key global change drivers, including climate change, land use change, and pesticide use, on persistence …