Science Enabled by Specimen Data
Couper, L. I., D. U. Nalukwago, K. P. Lyberger, J. E. Farner, and E. A. Mordecai. 2024. How Much Warming Can Mosquito Vectors Tolerate? Global Change Biology 30. https://doi.org/10.1111/gcb.17610
Climate warming is expected to substantially impact the global landscape of mosquito‐borne disease, but these impacts will vary across disease systems and regions. Understanding which diseases, and where within their distributions, these impacts are most likely to occur is critical for preparing public health interventions. While research has centered on potential warming‐driven expansions in vector transmission, less is known about the potential for vectors to experience warming‐driven stress or even local extirpations. In conservation biology, species risk from climate warming is often quantified through vulnerability indices such as thermal safety margins—the difference between an organism's upper thermal limit and its habitat temperature. Here, we estimated thermal safety margins for 8 mosquito species that are the vectors of malaria, dengue, chikungunya, Zika, West Nile and other major arboviruses, across their known ranges to investigate which mosquitoes and regions are most and least vulnerable to climate warming. We find that several of the most medically important mosquito vector species, including Ae. aegypti and An. gambiae, have positive thermal safety margins across the majority of their ranges when realistic assumptions of mosquito behavioral thermoregulation are incorporated. On average, the lowest climate vulnerability, in terms of both the magnitude and duration of thermal safety, was just south of the equator and at northern temperate range edges, and the highest climate vulnerability was in the subtropics. Mosquitoes living in regions including the Middle East, the western Sahara, and southeastern Australia, which are largely comprised of desert and xeric shrubland biomes, have the highest climate vulnerability across vector species.
Buckner, M. A., S. T. Hoge, and B. N. Danforth. 2024. Forecasting the Effects of Global Change on a Bee Biodiversity Hotspot. Ecology and Evolution 14. https://doi.org/10.1002/ece3.70638
The Mojave and Sonoran Deserts, recognized as a global hotspot for bee biodiversity, are experiencing habitat degradation from urbanization, utility‐scale solar energy (USSE) development, and climate change. In this study, we evaluated the current and future distribution of bee diversity, assessed how protected areas safeguard bee species richness, and predicted how global change may affect bees across the region. Using Joint Species Distribution Models (JSDMs) of 148 bee species, we project changes in species distributions, occurrence area, and richness under four global change scenarios between 1971 and 2050. We evaluated the threat posed by USSE development and predicted how climate change will affect the suitability of protected areas for conservation. Our findings indicate that changes in temperature and precipitation do not uniformly affect bee richness. Lower elevation protected areas are projected to experience mean losses of up to 5.8 species, whereas protected areas at higher elevations and transition zones may gain up to 7.8 species. Areas prioritized for future USSE development have an average species richness of 4.2 species higher than the study area average, and lower priority “variance” areas have 8.2 more species. USSE zones are expected to experience declines of up to 8.0 species by 2050 due to climate change alone. Despite the importance of solitary bees for pollination, their diversity is often overlooked in land management decisions. Our results show the utility of JSDMs for leveraging existing collection records to ease the inclusion of data‐limited insect species in land management decision‐making.
Tu, W., Y. Du, Y. E. Stuart, Y. Li, Y. Wang, Q. Wu, B. Guo, and X. Liu. 2024. Biological invasion is eroding the unique assembly of island herpetofauna worldwide. Biological Conservation 300: 110853. https://doi.org/10.1016/j.biocon.2024.110853
Island ecosystems have significant conservation value owing to their higher endemic biotas. Moreover, studies of regional communities that compare differences in species composition (species dissimilarity) among islands and the mainland suggest that community assembly on islands is different from that on the mainland. However, the uniqueness of island biotic assembly has been little studied at the global scale, nor have phylogenetic information or alien species been considered in these patterns. We evaluate taxonomic and phylogenetic change from one community to the next, focusing on differences in species composition between mainland-mainland (M-M) pairs compared to differences between mainland-island pairs (M-I) and between island-island pairs (I-I), using herpetofauna on islands and adjacent mainland areas worldwide. Our analyses detect greater taxonomic and phylogenetic dissimilarity for M-I and I-I comparisons than predicted by M-M model, indicating different island herpetofauna assembly patterns compared with mainland counterparts across the world. However, this higher M-I dissimilarity has been significantly decreased after considering alien species. Our results provide global evidence on the importance of island biodiversity conservation from the aspect of both the taxonomic and phylogenetic uniqueness of island biotic assembly.
Bartholomew, C. S., E. A. Murray, S. Bossert, J. Gardner, and C. Looney. 2024. An annotated checklist of the bees of Washington state. Journal of Hymenoptera Research 97: 1007–1121. https://doi.org/10.3897/jhr.97.129013
AbstractBees (Hymenoptera: Apoidea) are vital components of global ecosystems, yet knowledge of their distribution is limited in many regions. Washington state is located in an ecologically diverse part of North America and encompasses habitat types and plant communities known for high bee species richness. To establish a baseline for future studies on bee communities in the state, we used published and unpublished datasets to develop a preliminary annotated checklist of bees occurring in Washington state. We document, with high confidence, 565 species of bees in Washington and identify an additional 102 species likely to occur in the state. We anticipate future research survey efforts, such as the newly initiated Washington Bee Atlas, will discover several species that have the potential to occur in Washington and provide new data for 84 species which have not been recorded in more than 50 years.
PEDRO, D. D., F. S. CECCARELLI, P. SAGOT, E. LÓPEZ-REYES, J. L. MULLINS, J. A. MÉRIDA-RIVAS, A. FALCON-BRINDIS, et al. 2024. Revealing the Baja California Peninsula’s Hidden Treasures: An Annotated checklist of the native bees (Hymenoptera: Apoidea: Anthophila). Zootaxa 5522: 1–391. https://doi.org/10.11646/zootaxa.5522.1.1
To date, the knowledge of bee diversity in the Baja California Peninsula has primarily relied on large, sporadic expeditions from the first half of the 20th century. To address the knowledge gaps, we conducted extensive fieldwork from 2019 to 2023, visited entomological collections in Mexico and USA, and accessed digital databases and community science platforms to compile records. As a result of our field surveys, we identified 521 morphospecies, with 350 recognized as valid species, including 96 new records for the Baja California Peninsula and 68 new findings for Mexico, including the rediscovery of Megachile seducta Mitchell, 1934, ranked as possibly extinct. Additionally, museum visits added 24 new species records for the peninsula, including 12 new to Mexico. Integrating the new and existing records results in a comprehensive checklist that documents 728 species for the peninsula, 613 for Baja California, and 300 for Baja California Sur. Notably, 62 species are endemic to the peninsula, of which 22 are only found in Baja California, and 23 in Baja California Sur. Our findings show a greater bee diversity in northern latitudes, with a sharp decrease to the central and southern peninsula, which corresponds to the geographic distribution of the records. This supports the premise that the Baja California peninsula remains an unexplored area and highlights the importance of conducting studies like the one presented here.
Giulian, J., B. N. Danforth, and J. G. Kueneman. 2024. A Large Aggregation of Melissodes bimaculatus (Hymenoptera: Apidae) Offers Perspectives on Gregarious Nesting and Pollination Services. Northeastern Naturalist 31. https://doi.org/10.1656/045.031.0314
From the largest nesting aggregation ever recorded for the genus Melissodes, we took diverse bionomic measurements of Melissodes bimaculatus (Two-spotted Longhorn Bee). Our results show a protandrous reproductive strategy occurring from July through August in New York. We observed parasitism by the kleptoparasitic bee Triepeolus simplex as well as nest-architecture modifications to ease this burden that support the selfish-herd hypothesis. In this population, we also found a proclivity for grass (Poaceae) pollen, a previously undocumented diet preference for Two-spotted Longhorn Bees. We further showed that this bee species has widespread climatically suitable habitat, with expected range expansion under future climate conditions. Altogether, our results offer novel insights into the ecology of theTwo-spotted Longhorn Bee and its gregarious nesting behavior.
Escalante, T., M. Farfán, O. Campos, L. M. Ochoa-Ochoa, K. Flores-Quintal, D. R. García-Vélez, A. L. Medina-Bárcenas, and F. Saenz. 2024. Knowledge shortfalls and the effect of wildfires on biodiversity conservation in Guanajuato, Mexico. Revista Mexicana de Biodiversidad 95: e955323. https://doi.org/10.22201/ib.20078706e.2024.95.5323
Knowledge of shortfalls could modify the geographic distribution patterns and limit the actions to conserve the biodiversity, even in the taxa best known. In addition, forest fires also could modify those patterns, but the potential effects of both factors have not been tested. Our aim was to analyze the effect of the Linnean and Wallacean shortfalls in the first evaluation of wildfire impacts on 22 amphibian and 13 mammal species distributed in Guanajuato, Mexico. We evaluated those shortfalls using the non-parametric estimator Chao2 and the Qs estimator and through maps of species richness patterns. To evaluate the effects of wildfires, we produced a fire recurrence map and quantified the burned area within species distributions and in 24 Protected Natural Areas (PNA) in the state. The Linnean shortfall showed some species missing to record in Guanajuato for both taxa, while the Wallacean shortfall showed poor quality of knowledge. Fire recurrence was high within 5 PNA. The richness patterns affected by fires covered nearly 17% of the surface of Guanajuato. Improving the knowledge of biogeographical patterns could provide better tools to stakeholders to decrease the negative impact of fires within PNA.
Vélez, D., and F. Vivallo. 2024. Key areas for conserving and sustainably using oil-collecting bees (Apidae: Centridini, Tapinotaspidini, Tetrapediini) in the Americas. Journal of Insect Conservation. https://doi.org/10.1007/s10841-024-00620-0
The solitary oil-collecting bees of the tribes Centridini, Tapinotaspidini, and Tetrapediini inhabit areas from the southern part of the Nearctic Region through the Patagonian in southern South America, including the Caribbean. These bees are morphologically and behaviorally specialized in collecting oils as a reward from specialized floral glandular structures present in oil-producer plants. Oil-producer plants and oil-collecting bees have a mutualistic relationship in which the latter potentially pollinate the formers while collecting oils from their flowers. The main objective of this work is to infer the species richness and the key areas for conservation, research, and sustainable use of oil-collecting bees of the tribes Centridini, Tapinotaspidini, and Tetrapediini in the Americas. We collected occurrence records for 528 species of oil-collecting bees and estimated the species richness for each tribe and genus. In total, we estimated 664 species across the three mentioned tribes. With that baseline information, we created models of the richness and rarity patterns of the entire group of species and each tribe as a criterion to highlight key areas, along with richness and rarity centers for the American oil-collecting bees. We identified several critical areas that can be prioritized for conservation and research projects, including territories in Panama, Costa Rica, the Central and Northern Andes, the Amazon basin, and the biogeographic provinces of Cerrado, Atlantic Forest, Pampean, and Chacoan. Here we provide crucial information on key diversity areas for oil-collecting bees across the Americas. This information can be used for the conservation, research, and sustainable use of this important group of insect pollinators.
Graham, K. K., P. Glaum, J. Hartert, J. Gibbs, E. Tucker, R. Isaacs, and F. S. Valdovinos. 2024. A century of wild bee sampling: historical data and neural network analysis reveal ecological traits associated with species loss. Proceedings of the Royal Society B: Biological Sciences 291. https://doi.org/10.1098/rspb.2023.2837
We analysed the wild bee community sampled from 1921 to 2018 at a nature preserve in southern Michigan, USA, to study long-term community shifts in a protected area. During an intensive survey in 1972 and 1973, Francis C. Evans detected 135 bee species. In the most recent intensive surveys conducted in 2017 and 2018, we recorded 90 species. Only 58 species were recorded in both sampling periods, indicating a significant shift in the bee community. We found that the bee community diversity, species richness and evenness were all lower in recent samples. Additionally, 64% of the more common species exhibited a more than 30% decline in relative abundance. Neural network analysis of species traits revealed that extirpation from the reserve was most likely for oligolectic ground-nesting bees and kleptoparasitic bees, whereas polylectic cavity-nesting bees were more likely to persist. Having longer phenological ranges also increased the chance of persistence in polylectic species. Further analysis suggests a climate response as bees in the contemporary sampling period had a more southerly overall distribution compared to the historic community. Results exhibit the utility of both long-term data and machine learning in disentangling complex indicators of bee population trajectories.
Abou-Shaara, H. 2024. Using Maximum Entropy Algorithm to Analyze Changes in the Distribution of the Stingless Bees, Tetragonisca angustula (Latreille, 1811), in Response to Future Climatic Conditions. JOURNAL OF THE ENTOMOLOGICAL RESEARCH SOCIETY. https://doi.org/10.51963/jers.v26i2.2567
The stingless bees, Tetragonisca angustula (Latreille, 1811), have a large habitat distribution across Central and South America. These bees are considered beneficial for plant pollination and honey production. This study aims to identify the significant environmental factors affecting the distribution of these bees and the potential effects of future climatic conditions on their distribution. To achieve this objective, the study employed a modeling approach based on MaxEnt, GIS, and DIVA-GIS, using six environmental variables based on temperature and precipitation, and two future climate models for 2050: The Beijing Climate Center Climate System Model (BCC-CSM2-MR) and model Earth System Model2 (CMCC-ESM2). The model’s performance was high, as the area under the curve was 0.965±0.003, and the true skill statistic was 0.64, indicating the accuracy of the outputs. The results revealed a high restriction of these bees to their native distribution and the suitability of some regions outside their native range. The study found annual precipitation to be highly important for T. angustula and suggests a limited potential invasion to other regions in the near future.