Science Enabled by Specimen Data

Bürger, M., and J. Chory. 2024. A potential role of heat‐moisture couplings in the range expansion of Striga asiatica. Ecology and Evolution 14. https://doi.org/10.1002/ece3.11332

Parasitic weeds in the genera Orobanche, Phelipanche (broomrapes) and Striga (witchweeds) have a devastating impact on food security across much of Africa, Asia and the Mediterranean Basin. Yet, how climatic factors might affect the range expansion of these weeds in the context of global environmental change remains unexplored. We examined satellite‐based environmental variables such as surface temperature, root zone soil moisture, and elevation, in relation to parasitic weed distribution and environmental conditions over time, in combination with observational data from the Global Biodiversity Information Facility (GBIF). Our analysis reveals contrasting environmental and altitude preferences in the genera Striga and Orobanche. Asiatic witchweed (Striga asiatica), which infests corn, rice, sorghum, and sugar cane crops, appears to be expanding its range in high elevation habitats. It also shows a significant association with heat‐moisture coupling events, the frequency of which is rising in such environments. These results point to geographical shifts in distribution and abundance in parasitic weeds due to climate change.

Qin, F., T. Xue, X. Zhang, X. Yang, J. Yu, S. R. Gadagkar, and S. Yu. 2023. Past climate cooling and orogenesis of the Hengduan Mountains have influenced the evolution of Impatiens sect. Impatiens (Balsaminaceae) in the Northern Hemisphere. BMC Plant Biology 23. https://doi.org/10.1186/s12870-023-04625-w

Background Impatiens sect. Impatiens is distributed across the Northern Hemisphere and has diversified considerably, particularly within the Hengduan Mountains (HDM) in southwest China. Yet, the infra-sectional phylogenetic relationships are not well resolved, largely due to limited taxon sampling and an insufficient number of molecular markers. The evolutionary history of its diversification is also poorly understood. In this study, plastome data and the most complete sampling to date were used to reconstruct a robust phylogenetic framework for this section. The phylogeny was then used to investigate its biogeographical history and diversification patterns, specifically with the aim of understanding the role played by the HDM and past climatic changes in its diversification. Results A stable phylogeny was reconstructed that strongly supported both the monophyly of the section and its division into seven major clades (Clades I-VII). Molecular dating and ancestral area reconstruction suggest that sect. Impatiens originated in the HDM and Southeast China around 11.76 Ma, after which different lineages dispersed to Northwest China, temperate Eurasia, and North America, mainly during the Pliocene and Pleistocene. An intercontinental dispersal event from East Asia to western North America may have occurred via the Bering Land Bridge or Aleutian Islands. The diversification rate was high during its early history, especially with the HDM, but gradually decreased over time both within and outside the HDM. Multiple linear regression analysis showed that the distribution pattern of species richness was strongly associated with elevation range, elevation, and mean annual temperature. Finally, ancestral niche analysis indicated that sect. Impatiens originated in a relatively cool, middle-elevation area. Conclusions We inferred the evolutionary history of sect. Impatiens based on a solid phylogenetic framework. The HDM was the primary source or pump of its diversity in the Northern Hemisphere. Orogeny and climate change may have also shaped its diversification rates, as a steady decrease in the diversification rate coincided with the uplift of the HDM and climate cooling. These findings provide insights into the distribution pattern of sect. Impatiens and other plants in the Northern Hemisphere.

Rodríguez-Merino, A. 2023. Identifying and Managing Areas under Threat in the Iberian Peninsula: An Invasion Risk Atlas for Non-Native Aquatic Plant Species as a Potential Tool. Plants 12: 3069. https://doi.org/10.3390/plants12173069

Predicting the likelihood that non-native species will be introduced into new areas remains one of conservation’s greatest challenges and, consequently, it is necessary to adopt adequate management measures to mitigate the effects of future biological invasions. At present, not much information is available on the areas in which non-native aquatic plant species could establish themselves in the Iberian Peninsula. Species distribution models were used to predict the potential invasion risk of (1) non-native aquatic plant species already established in the peninsula (32 species) and (2) those with the potential to invade the peninsula (40 species). The results revealed that the Iberian Peninsula contains a number of areas capable of hosting non-native aquatic plant species. Areas under anthropogenic pressure are at the greatest risk of invasion, and the variable most related to invasion risk is temperature. The results of this work were used to create the Invasion Risk Atlas for Alien Aquatic Plants in the Iberian Peninsula, a novel online resource that provides information about the potential distribution of non-native aquatic plant species. The atlas and this article are intended to serve as reference tools for the development of public policies, management regimes, and control strategies aimed at the prevention, mitigation, and eradication of non-native aquatic plant species.

Graham, C. D. K., E. J. Forrestel, A. L. Schilmiller, A. T. Zemenick, and M. G. Weber. 2023. Evolutionary signatures of a trade-off in direct and indirect defenses across the wild grape genus Vitis. Evolution. https://doi.org/10.1093/evolut/qpad140

Evolutionary correlations between chemical defense and protection by mutualist bodyguards have been long predicted, but tests of these pattern remain rare. We use a phylogenetic framework to test for evolutionary correlations indicative of trade-offs or synergisms between direct defense in the form of plant secondary metabolism, and indirect defense in the form of leaf domatia, across 33 species in the wild grape genus, Vitis. We also performed a bioassay with a generalist herbivore to associate our chemical phenotypes with herbivore palatability. Finally, we tested whether defensive traits correlate with the average abiotic characteristics of each species’ contemporary range and whether these correlations were consistent with plant defense theory. We found a negative evolutionary correlation between domatia size and the diversity of secondary metabolites in Vitis leaf tissue across the genus, and also that leaves with a higher diversity and richness of secondary metabolites were less palatable to a generalist herbivore, consistent with a trade-off in chemical and mutualistic defense investment. Predictions from plant defense theory were not supported by associations between investment in defense phenotypes and abiotic variables. Our work demonstrates an evolutionary pattern indicative of a trade-off between indirect and direct defense strategies across the Vitis genus.

Benson, C. W., M. R. Sheltra, P. J. Maughan, E. N. Jellen, M. D. Robbins, B. S. Bushman, E. L. Patterson, et al. 2023. Homoeologous evolution of the allotetraploid genome of Poa annua L. BMC Genomics 24. https://doi.org/10.1186/s12864-023-09456-5

Background Poa annua (annual bluegrass) is an allotetraploid turfgrass, an agronomically significant weed, and one of the most widely dispersed plant species on earth. Here, we report the chromosome-scale genome assemblies of P. annua’s diploid progenitors, P. infirma and P. supina, and use multi-omic analyses spanning all three species to better understand P. annua’s evolutionary novelty. Results We find that the diploids diverged from their common ancestor 5.5 – 6.3 million years ago and hybridized to form P. annua  ≤ 50,000 years ago. The diploid genomes are similar in chromosome structure and most notably distinguished by the divergent evolutionary histories of their transposable elements, leading to a 1.7 × difference in genome size. In allotetraploid P. annua, we find biased movement of retrotransposons from the larger (A) subgenome to the smaller (B) subgenome. We show that P. annua’s B subgenome is preferentially accumulating genes and that its genes are more highly expressed. Whole-genome resequencing of several additional P. annua accessions revealed large-scale chromosomal rearrangements characterized by extensive TE-downsizing and evidence to support the Genome Balance Hypothesis. Conclusions The divergent evolutions of the diploid progenitors played a central role in conferring onto P. annua its remarkable phenotypic plasticity. We find that plant genes (guided by selection and drift) and transposable elements (mostly guided by host immunity) each respond to polyploidy in unique ways and that P. annua uses whole-genome duplication to purge highly parasitized heterochromatic sequences. The findings and genomic resources presented here will enable the development of homoeolog-specific markers for accelerated weed science and turfgrass breeding .

Cousins-Westerberg, R., N. Dakin, L. Schat, G. Kadereit, and A. M. Humphreys. 2023. Evolution of cold tolerance in the highly stress-tolerant samphires and relatives (Salicornieae: Amaranthaceae). Botanical Journal of the Linnean Society. https://doi.org/10.1093/botlinnean/boad009

Low temperature constitutes one of the main barriers to plant distributions, confining many clades to their ancestrally tropical biome. However, recent evidence suggests that transitions from tropical to temperate biomes may be more frequent than previously thought. Here, we study the evolution of cold and frost tolerance in the globally distributed and highly stress-tolerant Salicornieae (Salicornioideae, Amaranthaceae s.l.). We first generate a phylogenetic tree comprising almost all known species (85-90%), using newly generated (n = 106) and published nuclear-ribosomal and plastid sequences. Next, we use geographical occurrence data to document in which clades and geographical regions cold-tolerant species occur and reconstruct how cold tolerance evolved. Finally, we test for correlated evolution between frost tolerance and the annual life form. We find that frost tolerance has evolved independently in up to four Northern Hemisphere lineages but that annuals are no more likely to evolve frost tolerance than perennials, indicating the presence of different strategies for adapting to cold environments. Our findings add to mounting evidence for multiple independent out-of-the-tropics transitions among close relatives of flowering plants and raise new questions about the ecological and physiological mechanism(s) of adaptation to low temperatures in Salicornieae.

Zargar, S. A., A. H. Ganie, Z. A. Reshi, M. A. Shah, N. Sharma, and A. A. Khuroo. 2023. Oxalis corniculata L. (Oxalidaceae), an addition of an alien plant species to the flora of Ladakh, India. Vegetos. https://doi.org/10.1007/s42535-023-00612-6

Oxalis corniculata L. is recorded for the first time from the Trans-Himalayan region of Ladakh. The plant species has a conspicuous stem, obcordate leaf blades, and umbellate inflorescence with yellow flowers and cylindrical or narrowly ovoid fruits. As the plant is known to spread rapidly, it may become an aggressive weed of agricultural crops in Ladakh in near future. The taxonomic description, photographs and distribution map of O. corniculata are provided to facilitate its field identification in the region.

Huang, T., J. Chen, K. E. Hummer, L. A. Alice, W. Wang, Y. He, S. Yu, et al. 2023. Phylogeny of Rubus (Rosaceae): Integrating molecular and morphological evidence into an infrageneric revision. TAXON. https://doi.org/10.1002/tax.12885

Rubus (Rosaceae), one of the most complicated angiosperm genera, contains about 863 species, and is notorious for its taxonomic difficulty. The most recent (1910–1914) global taxonomic treatment of the genus was conducted by Focke, who defined 12 subgenera. Phylogenetic results over the past 25 years suggest that Focke's subdivisions of Rubus are not monophyletic, and large‐scale taxonomic revisions are necessary. Our objective was to provide a comprehensive phylogenetic analysis of the genus based on an integrative evidence approach. Morphological characters, obtained from our own investigation of living plants and examination of herbarium specimens are combined with chloroplast genomic data. Our dataset comprised 196 accessions representing 145 Rubus species (including cultivars and hybrids) and all of Focke's subgenera, including 60 endemic Chinese species. Maximum likelihood analyses inferred phylogenetic relationships. Our analyses concur with previous molecular studies, but with modifications. Our data strongly support the reclassification of several subgenera within Rubus. Our molecular analyses agree with others that only R. subg. Anoplobatus forms a monophyletic group. Other subgenera are para‐ or polyphyletic. We suggest a revised subgeneric framework to accommodate monophyletic groups. Character evolution is reconstructed, and diagnostic morphological characters for different clades are identified and discussed. Based on morphological and molecular evidence, we propose a new classification system with 10 subgenera: R. subg. Anoplobatus, R. subg. Batothamnus, R. subg. Chamaerubus, R. subg. Cylactis, R. subg. Dalibarda, R. subg. Idaeobatus, R. subg. Lineati, R. subg. Malachobatus, R. subg. Melanobatus, and R. subg. Rubus. The revised infrageneric nomenclature inferred from our analyses is provided along with synonymy and type citations. Our new taxonomic backbone is the first systematic and complete global revision of Rubus since Focke's treatment. It offers new insights into deep phylogenetic relationships of Rubus and has important theoretical and practical significance for the development and utilization of these important agronomic crops.

Reichgelt, T., A. Baumgartner, R. Feng, and D. A. Willard. 2023. Poleward amplification, seasonal rainfall and forest heterogeneity in the Miocene of the eastern USA. Global and Planetary Change 222: 104073. https://doi.org/10.1016/j.gloplacha.2023.104073

Paleoclimate reconstructions can provide a window into the environmental conditions in Earth history when atmospheric carbon dioxide concentrations were higher than today. In the eastern USA, paleoclimate reconstructions are sparse, because terrestrial sedimentary deposits are rare. Despite this, the eastern USA has the largest population and population density in North America, and understanding the effects of current and future climate change is of vital importance. Here, we provide terrestrial paleoclimate reconstructions of the eastern USA from Miocene fossil floras. Additionally, we compare proxy paleoclimate reconstructions from the warmest period in the Miocene, the Miocene Climatic Optimum (MCO), to those of an MCO Earth System Model. Reconstructed Miocene temperatures and precipitation north of 35°N are higher than modern. In contrast, south of 35°N, temperatures and precipitation are similar to today, suggesting a poleward amplification effect in eastern North America. Reconstructed Miocene rainfall seasonality was predominantly higher than modern, regardless of latitude, indicating greater variability in intra-annual moisture transport. Reconstructed climates are almost uniformly in the temperate seasonal forest biome, but heterogeneity of specific forest types is evident. Reconstructed Miocene terrestrial temperatures from the eastern USA are lower than modeled temperatures and coeval Atlantic sea surface temperatures. However, reconstructed rainfall is consistent with modeled rainfall. Our results show that during the Miocene, climate was most different from modern in the northeastern states, and may suggest a drastic reduction in the meridional temperature gradient along the North American east coast compared to today.

Ripley, B. S., S. L. Raubenheimer, L. Perumal, M. Anderson, E. Mostert, B. S. Kgope, G. F. Midgley, and K. J. Simpson. 2022. CO 2 ‐fertilisation enhances resilience to browsing in the recruitment phase of an encroaching savanna tree. Functional Ecology. https://doi.org/10.1111/1365-2435.14215

CO2‐fertilisation is implicated in the widespread and significant woody encroachment of savannas due to CO2‐stimulated increases in belowground reserves that enhance sapling regrowth after fire. However, the effect of CO2 concentration ([CO2]) on tree responses to the other major disturbance in savannas, herbivory, is poorly understood. Herbivory‐responses cannot be predicted from fire‐responses, as herbivore effects occur earlier during establishment and are moderated by plant palatability and defence rather than belowground carbon accumulation.