Science Enabled by Specimen Data

Smith, A. B., S. J. Murphy, D. Henderson, and K. D. Erickson. 2023. Including imprecisely georeferenced specimens improves accuracy of species distribution models and estimates of niche breadth. Global Ecology and Biogeography.

Aim Museum and herbarium specimen records are frequently used to assess the conservation status of species and their responses to climate change. Typically, occurrences with imprecise geolocality information are discarded because they cannot be matched confidently to environmental conditions and are thus expected to increase uncertainty in downstream analyses. However, using only precisely georeferenced records risks undersampling of the environmental and geographical distributions of species. We present two related methods to allow the use of imprecisely georeferenced occurrences in biogeographical analysis. Innovation Our two procedures assign imprecise records to the (1) locations or (2) climates that are closest to the geographical or environmental centroid of the precise records of a species. For virtual species, including imprecise records alongside precise records improved the accuracy of ecological niche models projected to the present and the future, especially for species with c. 20 or fewer precise occurrences. Using only precise records underestimated loss of suitable habitat and overestimated the amount of suitable habitat in both the present and the future. Including imprecise records also improves estimates of niche breadth and extent of occurrence. An analysis of 44 species of North American Asclepias (Apocynaceae) yielded similar results. Main conclusions Existing studies examining the effects of spatial imprecision typically compare outcomes based on precise records against the same records with spatial error added to them. However, in real-world cases, analysts possess a mix of precise and imprecise records and must decide whether to retain or discard the latter. Discarding imprecise records can undersample the geographical and environmental distributions of species and lead to mis-estimation of responses to past and future climate change. Our method, for which we provide a software implementation in the enmSdmX package for R, is simple to use and can help leverage the large number of specimen records that are typically deemed “unusable” because of spatial imprecision in their geolocation.

McDaniel, V. L., B. Baker, T. Witsell, and S. L. Hooks. 2022. Significant range extension of Streptanthus squamiformis (Brassicaceae), a Ouachita Mountain endemic. Journal of the Botanical Research Institute of Texas 16: 559–563.

Streptanthus squamiformis Goodman (Brassicaceae) is a plant narrowly endemic to the Athens Plateau; Central Hills, Ridges, and Valleys; and Central Mountain Ranges ecoregions of the Ouachita Mountains, and previously known from five adjacent counties in western Arkansas and southeastern Oklahoma. We document a 100-km range extension of this species to Perry County in central Arkansas, its first occurrence in the Fourche Mountains Ecoregion.

Young, S. N. R., and M. R. Lundgren. 2022. C 4 photosynthesis in Paulownia  ? A case of inaccurate citations. PLANTS, PEOPLE, PLANET.

The rapid growth of trees in genus Paulownia (Paulowniaceae) has been attributed in the literature to their use of C4 photosynthesis, a complex trait that confers increased photosynthetic efficiency under certain environmental conditions. After careful examination of citations used to support the idea that Paulownia species use C4 photosynthesis, we find that there is no data underpinning this claim. Despite this, many investment schemes utilise information about the physiology of Paulownia, including photosynthetic type, to legitimise the use of Paulownia trees for financial investment and carbon offsetting. This study uses leaf physiology, anatomy and stable isotope data to determine whether or not three species in Paulownia (Paulownia tomentosa, Paulownia fortunei and Paulownia kawakamii) use C4 photosynthesis. These data are compared with existing data for C3 and C4 woody species in the literature. We show that the leaf physiology, anatomy and stable isotope phenotypes of the three Paulownia trees considered in the study are not consistent with those of C4 plants. Our findings highlight how inaccurate citation of scientific findings can contribute to the spread of misinformation beyond the scientific community, as some of those promoting investments in Paulownia plantations reference the photosynthetic superiority of Paulownia as a means to legitimise its use in carbon offsetting.

Latron, M., J. Arnaud, E. Schmitt, and A. Duputié. 2022. Idiosyncratic shifts in life‐history traits at species’ geographic range edges. Oikos.

Anthropogenic changes drive shifts in species' geographic distributions and increase the occurrence of leading or trailing‐edge marginal populations. Theoretical predictions and empirical observations indicate substantial changes in life‐history traits in marginal populations, often involving dispersal and reproductive abilities. Using a common garden experiment, we studied the variation of life‐history traits of populations sampled on spatial gradients extending from range‐core to range‐edge habitats for three expanding (miner's lettuce Claytonia perfoliata, Danish scurvygrass Cochlearia danica and rock samphire Crithmum maritimum) and one receding plant species (dune pansy Viola tricolor subs. curtisii). We monitored life‐history traits related to dispersal, phenology, survival, reproductive output and selfing ability. Significant shifts in life‐history traits between central and marginal populations strongly differed among species. Marginal populations of the three expanding species displayed modified seed weight in natura, suggesting increased dispersal abilities in leading‐edge populations. Discarding unassessed maternal effects, this trait modification can be due to phenotypic plasticity or to genetic differentiation. In miner's lettuce, marginal expanding populations show advanced phenology and higher reproductive output, that may potentially influence their colonization ability. In rock samphire, life‐history traits showed large intra‐ and inter‐population variability that did not follow a core‐to‐edge geographic trend, except for seed size. Finally, the receding populations of the dune pansy displayed a shift towards a plant architecture maximizing survival but reducing individual reproductive success. Altogether, our results indicated a common trend for increased dispersal abilities in marginal populations of expanding species. However, shifts in species' distributions may drive idiosyncratic changes in other life‐history traits, for which we observed no general evolutionary syndrome at range edges. These findings go along a stochastic view of trait evolution during range expansion, and question how to draw predictive projections of species' distribution shifts under current global change.

Kroonen, G., A. Jakob, A. I. Palmér, P. van Sluis, and A. Wigman. 2022. Indo-European cereal terminology suggests a Northwest Pontic homeland for the core Indo-European languages S. Wichmann [ed.],. PLOS ONE 17: e0275744.

Questions on the timing and the center of the Indo-European language dispersal are central to debates on the formation of the European and Asian linguistic landscapes and are deeply intertwined with questions on the archaeology and population history of these continents. Recent palaeogenomic studies support scenarios in which the core Indo-European languages spread with the expansion of Early Bronze Age Yamnaya herders that originally inhabited the East European steppes. Questions on the Yamnaya and Pre-Yamnaya locations of the language community that ultimately gave rise to the Indo-European language family are heavily dependent on linguistic reconstruction of the subsistence of Proto-Indo-European speakers. A central question, therefore, is how important the role of agriculture was among the speakers of this protolanguage. In this study, we perform a qualitative etymological analysis of all previously postulated Proto-Indo-European terminology related to cereal cultivation and cereal processing. On the basis of the evolution of the subsistence strategies of consecutive stages of the protolanguage, we find that one or perhaps two cereal terms can be reconstructed for the basal Indo-European stage, also known as Indo-Anatolian, but that core Indo-European, here also including Tocharian, acquired a more elaborate set of terms. Thus, we linguistically document an important economic shift from a mostly non-agricultural to a mixed agro-pastoral economy between the basal and core Indo-European speech communities. It follows that the early, eastern Yamnaya of the Don-Volga steppe, with its lack of evidence for agricultural practices, does not offer a perfect archaeological proxy for the core Indo-European language community and that this stage of the language family more likely reflects a mixed subsistence as proposed for western Yamnaya groups around or to the west of the Dnieper River.

Marcussen, T., H. E. Ballard, J. Danihelka, A. R. Flores, M. V. Nicola, and J. M. Watson. 2022. A Revised Phylogenetic Classification for Viola (Violaceae). Plants 11: 2224.

The genus Viola (Violaceae) is among the 40–50 largest genera among angiosperms, yet its taxonomy has not been revised for nearly a century. In the most recent revision, by Wilhelm Becker in 1925, the then-known 400 species were distributed among 14 sections and numerous unranked groups. Here, we provide an updated, comprehensive classification of the genus, based on data from phylogeny, morphology, chromosome counts, and ploidy, and based on modern principles of monophyly. The revision is presented as an annotated global checklist of accepted species of Viola, an updated multigene phylogenetic network and an ITS phylogeny with denser taxon sampling, a brief summary of the taxonomic changes from Becker’s classification and their justification, a morphological binary key to the accepted subgenera, sections and subsections, and an account of each infrageneric subdivision with justifications for delimitation and rank including a description, a list of apomorphies, molecular phylogenies where possible or relevant, a distribution map, and a list of included species. We distribute the 664 species accepted by us into 2 subgenera, 31 sections, and 20 subsections. We erect one new subgenus of Viola (subg. Neoandinium, a replacement name for the illegitimate subg. Andinium), six new sections (sect. Abyssinium, sect. Himalayum, sect. Melvio, sect. Nematocaulon, sect. Spathulidium, sect. Xanthidium), and seven new subsections (subsect. Australasiaticae, subsect. Bulbosae, subsect. Clausenianae, subsect. Cleistogamae, subsect. Dispares, subsect. Formosanae, subsect. Pseudorupestres). Evolution within the genus is discussed in light of biogeography, the fossil record, morphology, and particular traits. Viola is among very few temperate and widespread genera that originated in South America. The biggest identified knowledge gaps for Viola concern the South American taxa, for which basic knowledge from phylogeny, chromosome counts, and fossil data is virtually absent. Viola has also never been subject to comprehensive anatomical study. Studies into seed anatomy and morphology are required to understand the fossil record of the genus.

Lu, L.-L., B.-H. Jiao, F. Qin, G. Xie, K.-Q. Lu, J.-F. Li, B. Sun, et al. 2022. Artemisia pollen dataset for exploring the potential ecological indicators in deep time. Earth System Science Data 14: 3961–3995.

Abstract. Artemisia, along with Chenopodiaceae, is the dominant component growing in the desert and dry grassland of the Northern Hemisphere. Artemisia pollen with its high productivity, wide distribution, and easy identification is usually regarded as an eco-indicator for assessing aridity and distinguishing grassland from desert vegetation in terms of the pollen relative abundance ratio of Chenopodiaceae/Artemisia (C/A). Nevertheless, divergent opinions on the degree of aridity evaluated by Artemisia pollen have been circulating in the palynological community for a long time. To solve the confusion, we first selected 36 species from nine clades and three outgroups of Artemisia based on the phylogenetic framework, which attempts to cover the maximum range of pollen morphological variation. Then, sampling, experiments, photography, and measurements were taken using standard methods. Here, we present pollen datasets containing 4018 original pollen photographs, 9360 pollen morphological trait measurements, information on 30 858 source plant occurrences, and corresponding environmental factors. Hierarchical cluster analysis on pollen morphological traits was carried out to subdivide Artemisia pollen into three types. When plotting the three pollen types of Artemisia onto the global terrestrial biomes, different pollen types of Artemisia were found to have different habitat ranges. These findings change the traditional concept of Artemisia being restricted to arid and semi-arid environments. The data framework that we designed is open and expandable for new pollen data of Artemisia worldwide. In the future, linking pollen morphology with habitat via these pollen datasets will create additional knowledge that will increase the resolution of the ecological environment in the geological past. The Artemisia pollen datasets are freely available at Zenodo (; Lu et al., 2022).

Smallwood, P. A., and D. W. Trapnell. 2022. Species Distribution Modeling Reveals Recent Shifts in Suitable Habitat for Six North American Cypripedium spp. (Orchidaceae). Diversity 14: 694.

Accelerating climate change is expected to cause range shifts of numerous taxa worldwide. While climatic projections and predicted consequences typically focus on the future (2050 or later), a measurable change in climatic conditions has occurred over recent decades. We investigate whether recent climate change has caused measurable shifts in suitable habitat for six North American species in the highly threatened genus Cypripedium (Orchidaceae). We constructed species distribution models using a maximum entropy approach from species occurrence records, 19 bioclimatic variables, land cover data, and soil data for two decadal time intervals (1980–1989 and 2010–2019). Models were compared between time intervals to assess shifts in locality, size, fragmentation, and mean elevation of suitable habitat. For all six congeners, the centroids of suitable habitat shifted between time intervals, although the directionality varied. There was, however, consistency among species within geographic regions. Consistent with our expectations, the optimal habitat for most species shifted to a higher elevation and for western species it shifted northwards. However, the habitat for one northwestern species shifted southwards and the habitat for eastern species converged on the Great Lakes region from different directions. This work illustrates the somewhat idiosyncratic responses of congeneric species to changing climatic conditions and how the geographic region occupied by a species may be more important for predicting shifts in habitat than is the response of a closely related taxon.

Contreras-Medina, R., M. Santiago-Alvarado, D. Espinosa, G. Rivas, and I. Luna-Vega. 2022. Distributional patterns and conservation of the genus Habromys (Rodentia: Cricetidae) in Mesoamerica. Studies on Neotropical Fauna and Environment: 1–17.

We analyzed the geographical distribution of Habromys species based on distributional data from museum specimens, web databases, and literature. We recorded species-presence data of each species in 0.5° × 0.5° grid cells and biogeographic provinces in Mexico and Central America. We analyzed the association between vegetation types and land use. We carried out species distribution models of most species of Habromys and those tree species frequently harboring these mice, finding a high distributional congruence among mice and trees. Species of Habromys occur throughout the montane systems of Mexico and northern Central America, so they can be considered characteristic elements of the Neotropical montane cloud forests. All species of the genus occur in Mexico, whereas Guatemala and El Salvador have only one species. Although all species of Habromys are highly restricted and considered rare species, only one (H. simulatus) is currently protected by Mexican laws. We assigned two species to a high and four to the critical conservation risk. Habromys species contribute to the recognition of Mesoamerica as a biodiversity hotspot.

Hirabayashi, K., S. J. Murch, and L. A. E. Erland. 2022. Predicted impacts of climate change on wild and commercial berry habitats will have food security, conservation and agricultural implications. Science of The Total Environment 845: 157341.

Climate change is now a reality and is altering ecosystems, with Canada experiencing 2–4 times the global average rate of warming. This will have a critical impact on berry cultivation and horticulture. Enhancing our understanding of how wild and cultivated berries will perform under changing climates will be essential to mitigating impacts on ecosystems, culture and food security. Our objective was to predict the impact of climate change on habitat suitability of four berry producing Vaccinium species: two species with primarily northern distributions (V. uliginosum, V. vitis-idaea), one species with a primarily southern distribution (V. oxycoccos), and the commercially cultivated V. macrocarpon. We used the maximum entropy (Maxent) model and the CMIP6 shared socioeconomic pathways (SSPs) 126 and 585 projected to 2041–2060 and 2061–2080. Wild species showed a uniform northward progression and expansion of suitable habitat. Our modeling predicts that suitable growing regions for commercial cranberries are also likely to shift with some farms becoming unsuitable for the current varieties and other regions becoming more suitable for cranberry farms. Both V. macrocarpon and V. oxycoccos showed a high dependence on precipitation-associated variables. Vaccinium vitis-idaea and V. uliginosum had a greater number of variables with smaller contributions which may improve their resilience to individual climactic events. Future competition between commercial cranberry farms and wild berries in protected areas could lead to conflicts between agriculture and conservation priorities. New varieties of commercial berries are required to maintain current commercial berry farms.