Science Enabled by Specimen Data
Weiss, R. M., T. Haye, O. Olfert, S. Barkley, J. Gavloski, J. Tansey, J. Otani, and M. A. Vankosky. 2025. Bioclimatic analysis of cabbage seedpod weevil, Ceutorhyncus obstrictus (Marsham) (Coleoptera: Curculionidae) and canola, Brassica napus Linnaeus (Brassicaceae) responses to climate. Canadian Journal of Plant Science 105: 1–16. https://doi.org/10.1139/cjps-2024-0177
The cabbage seedpod weevil (CSW), Ceutorhynchus obstrictus (Marsham) (Coleoptera: Curculionidae) is an important pest of brassicaceous crops, including canola ( Brassica napus Linnaeus). CSW consumes seeds of its host from inside the developing pods. It was introduced to North America from Europe and now occurs throughout the United States of America and Canada. Climate is one of the most important factors that determines species distribution and abundance. CLIMEX is a bioclimate model development application. Based on climate inputs, bioclimatic simulation models are tools that predict the potential geographic distribution and abundance of insects and plants. This study updated a previous bioclimatic model for CSW and presents a new model for canola. Validated models were used to conduct bioclimatic analysis of both species, the results of which provide a better understanding of how climate affects spatial distribution and abundance of CSW and the distribution and yield of canola. Application of incremental temperature and moisture scenarios were used to predict the spatial relationship of CSW risk and canola yield. We anticipate that the canola model will be applied to future bioclimatic studies of pests and beneficial insects of canola. Both the CSW and canola model can be used in climate change studies using datasets for predicted future climates.
Roberts, J., and S. Florentine. 2025. Current and future management challenges for globally invasive grasses, with special reference to Echinochloa crus‐galli, Panicum capillare and Sorghum halepense. Weed Research 65. https://doi.org/10.1111/wre.70005
Without appropriate and ongoing management interventions, weeds will continue to economically and environmentally disadvantage agricultural and natural ecosystems. For these management strategies to have long‐term sustained success, they need to carefully consider the biological aspects of the targeted weed. These strategies will also need to consider potential adaptations evolved by the targeted weed in response to a range of selection pressures imposed by anthropogenetic factors, climate change, changing environmental conditions, and inappropriate or unsuccessful management regimes. One group of weeds that has been observed to readily adapt to a wide range of conditions and has shown considerable challenges in their management is invasive grasses. Adding to these challenges is that several invasive grasses have also developed resistance to a range of herbicide modes of action, which, to date, has been one of the most commonly used methods of control. To address these challenges, this review explores the biology and ecology of the globally invasive annuals Echinochloa crus‐galli (Barnyard grass) and Panicum capillare (Witchgrass), and the perennial Sorghum halepense (Johnson grass) to identify (i) the most suitable management options for their control and (ii) potential research gaps that may assist in the future management direction of these species. Based on the findings of this review, it is clear that an integrated management approach that targets different aspects of the plant's biology, in combination with early detection and treatment and ongoing surveillance, is necessary for the long‐term control of these species. Although a combination of methods appears promising, further investigation still is required to evaluate their efficiency and long‐term success in a changing environment, all of which are further discussed within this review.
Pan, Y., C. Fu, C. Tian, H. Zhang, X. Wang, and M. Li. 2025. Unraveling the Impact of Environmental Factors and Evolutionary History on Species Richness Patterns of the Genus Sorbus at Global Level. Plants 14: 338. https://doi.org/10.3390/plants14030338
Understanding the drivers of species richness patterns is a major goal of ecology and evolutionary biology, and the drivers vary across regions and taxa. Here, we assessed the influence of environmental factors and evolutionary history on the pattern of species richness in the genus Sorbus (110 species). We mapped the global species richness pattern of Sorbus at a spatial resolution of 200 × 200 km, using 10,652 specimen records. We used stepwise regression to assess the relationship between 23 environmental predictors and species richness and estimated the diversification rate of Sorbus based on chloroplast genome data. The effects of environmental factors were explained by adjusted R2, and evolutionary factors were inferred based on differences in diversification rates. We found that the species richness of Sorbus was highest in the Hengduan Mountains (HDM), which is probably the center of diversity. Among the selected environmental predictors, the integrated model including all environmental predictors had the largest explanatory power for species richness. The determinants of species richness show regional differences. On the global and continental scale, energy and water availability become the main driving factors. In contrast, climate seasonality is the primary factor in the HDM. The diversification rate results showed no significant differences between HDM and non-HDM, suggesting that evolutionary history may have limited impact on the pattern of Sorbus species richness. We conclude that environmental factors play an important role in shaping the global pattern of Sorbus species richness, while diversification rates have a lesser impact.
Pan, Y., Y. Guan, S. Lv, X. Huang, Y. Lin, C. Wei, and D. Xu. 2025. Assessing the Potential Distribution of Lonicera japonica in China Under Climate Change: A Biomod2 Ensemble Model-Based Study. Agriculture 15: 393. https://doi.org/10.3390/agriculture15040393
Lonicera japonica, an importante rsource plant, possesses significant medicinal, economic, and ecological value. To understand its response to climate change and to optimize its conservation and utilization, this study employed the Biomod2 ensemble model to predict its potential distribution under future climate scenarios and identified key environmental factors influencing its distribution. The results showed that under current climatic conditions, the potential distribution of honeysuckle is primarily concentrated in low-altitude regions of central and eastern China and the Sichuan Basin. In future scenarios, the overall distribution pattern changes less, and the area of highly suitable habitats slightly decreases by 0.80%. Distribution analysis indicated a trend of northward migration towards higher latitudes. Temperature-related factors, including temperature seasonality, the minimum temperature of the coldest month, the mean temperature of the coldest quarter, and the annual mean temperature, were identified as dominant factors affecting its distribution. The Biomod2 ensemble model significantly improved the precision and accuracy of suitability predictions compared to single models, providing a scientific basis for predicting the future geographic distribution of honeysuckle and for establishing and utilizing its cultivation regions in China.
Chukwuma, E. C., and L. T. Mankga. 2025. A MaxEnt model for estimating suitable habitats for some important Pelargonium species in South Africa. Journal for Nature Conservation 84: 126845. https://doi.org/10.1016/j.jnc.2025.126845
Accessing the rich biodiversity in tropical ecosystems has been of great interest to scientists across the globe. While several species have been underutilized despite their wide distribution, many others are faced with continuous population decline across their native range. Here, we amassed occurrence data and environmental variables to estimate the spatial distribution and habitat suitability of six important Pelargonium species whose conservation status in South Africa has been of concern. These were combined and used to project the future habitats under 2 Global Climate Models (GCMs) and 2 Scenarios (RCP 4.5 & 8.5). We overlayed our area maps and conducted a gap analysis to identify priority areas for the conservation of our focal species. Results showed a distribution pattern driven by temperature and precipitation, and unstable suitable areas by the years 2050 and 2070. Five temperature and precipitation variables (Bio2, Bio4, Bio12, Bio14, and Bio18) were identified as primary contributors to the habitat suitability of the selected Pelargonium species. Our model evaluation demonstrated a strong performance, with an AUC score >0.8, providing robust support for its replicability in monitoring the spatial distribution of other related taxa. We identified key areas for conservation activities in a bid to expand the current known habitats of the species in focus. While we leveraged SDM approach for explaining the area of occupancy and the spatial extent of Pelargonium species across in South Africa, we posit that attention should be drawn to the preservation of the remaining populations of the species and their associated habitats, towards mitigating their extinction.
Wu, D., R. I. Milne, H. Yang, Y. Zhang, Y. Wang, S. Jia, J. Li, and K. Mao. 2025. Phylogenomics shed light on the complex evolutionary history of a gymnosperm genus showing East Asian–Tethyan disjunction. Journal of Systematics and Evolution. https://doi.org/10.1111/jse.13151
When and how disjunct distributions of biological taxa arose has long attracted interest in biogeography, yet the East Asian–Tethyan disjunction is understudied. Cupressus (Cupressaceae) shows this disjunction, with 10 species in East Asia and three in the Mediterranean region. Here we used target‐capture sequencing and obtained 1991 single‐copy nuclear genes, plus complete plastomes, to infer the evolutionary history of Cupressus. Our phylogenomic reconstruction resolved four well supported clades in Cupressus, but revealed significant phylogenetic conflicts, with inter‐lineage gene flow, incomplete lineage sorting and gene tree estimation error all making important contributions. The Chengiana clade most likely originated by hybridization between the ancestors of the Himalayan–Hengduan Mountains and subtropical Asia clades, whereas orogenic and climatic changes may have facilitated gene flow within the Himalayan–Hengduan Mountains clade. Molecular dating suggested that the most recent common ancestor of Cupressus appeared in East Asia around the middle Eocene period and then became continuously distributed across Eurasia. The East Asian–Tethyan disjunction arose when the Mediterranean and Himalayan–Hengduan Mountains clades diverged, likely to have been driven by Eocene/Oligocene declines in global temperature, then reinforced by the ecogeographic barrier created by the uplift of the Qinghai–Tibet Plateau. Niche shifts in the common ancestor of the Mediterranean clade, and signatures of selection in genes for drought and salt tolerance, probably indicate adaptation of this clade to local conditions. Overall, our study suggested that in‐depth phylogenomic analyses are powerful tools in deciphering the complex evolutionary history of the origin of East Asian–Tethyan disjunction of organisms, especially gymnosperms.
Kassout, J., S. Chakkour, A. El Ouahrani, Y. Hmimsa, S. El Fatehi, Y. Yang, R. Hadria, and M. Ater. 2024. Potential geographical distribution of Carob tree (Ceratonia siliqua L., Leguminosae) in Morocco under climate change. African and Mediterranean Agricultural Journal - Al Awamia. https://doi.org/10.34874/imist.prsm/afrimed-i145.48246
Climate change is expected to have a profound impact on the growth and distribution of plant species, particularly in Mediterranean regions. In this study, we investigate the suitable habitat and geographical distribution of Ceratonia siliqua L. (Leguminosae), an exceptional Mediterranean tree, in Morocco. Our hypothesis suggests a reduction in suitable habitats for the carob tree under climate change scenarios. To test this, we used the maximum entropy algorithm (Maxent), 303 occurrence points and 19 bioclimatic variables to generate current and future models. We considered two representative concentration pathways (RCP4.5 and RCP8.5) as future input scenarios for the years 2050 and 2070. The maximum entropy model yielded satisfactory results, with a high Area Under Curve value of 0.987 (±0.001). Jackknife tests revealed that precipitation, followed by temperature, significantly influence the biogeographical dynamics of the carob tree in Morocco. Thus, our findings confirm the projected reduction in suitable habitat area by 2050 and 2070 under climate change scenarios. The approaches developed in this study are promising for predicting the potential distribution of native Mediterranean species and can serve as an effective tool to support conservation and restoration programs.
Barker, B. S. 2024. Climate matching models for Ceratapion basicorne (Coleoptera: Apionidae), a biocontrol agent of yellow starthistle Y.-Q. Liu [ed.],. Journal of Economic Entomology. https://doi.org/10.1093/jee/toae299
Abstract Ceratapion basicorne (Illiger) (Coleoptera: Apionidae), a weevil native to Europe and western Asia, shows promise for enhancing the control of yellow starthistle (Centaurea solstitialis L.), an invasive annual forb in the western United States. However, a paucity of data on this biocontrol agent’s environmental constraints has made it difficult to assess the suitability of potential release locations. Climate matching models were developed for C. basicorne to help identify areas of the western United States with similar climates to the source area of breeding colonies being used for releases (home location). The models used climate variables derived from daily estimates of minimum temperature, maximum temperature, precipitation, and soil moisture for a 30-yr period spanning 1991–2020 at 1 km2 resolution. Of the areas where C. solstitialis is known to occur, the Central California Foothills, Eastern Cascades Foothills, Columbia Plateau, and mountainous parts of northcentral Utah had the most similar climates to the home location. Of these areas, the Eastern Cascades foothills in northeastern California and Wasatch Range in Utah occurred at a similar latitude as the home location, which may be important to consider if C. basicorne has photoperiodic diapause. The least similar climates occurred in wet coastal regions, high-elevation (cold) mountains, and hot deserts; however, C. solstitialis has not been detected in most of these areas. The development of process-based models for predicting the establishment of this agent will require a more detailed understanding of the agent’s requirements for development and survival.
Hagelstam-Renshaw, C., J. J. Ringelberg, C. Sinou, W. Cardinal-McTeague, and A. Bruneau. 2024. Biome evolution in subfamily Cercidoideae (Leguminosae): a tropical arborescent clade with a relictual depauperate temperate lineage. Brazilian Journal of Botany 48. https://doi.org/10.1007/s40415-024-01058-z
Some plant lineages remain within the same biome over time (biome conservatism), whereas others seem to adapt more easily to new biomes. The c. 398 species (14 genera) of subfamily Cercidoideae (Leguminosae or Fabaceae) are found in many biomes around the world, particularly in the tropical regions of South America, Asia and Africa, and display a variety of growth forms (small trees, shrubs, lianas and herbaceous perennials). Species distribution maps derived from cleaned occurrence records were compiled and compared with existing biome maps and with the literature to assign species to biomes. Rainforest (144 species), succulent (44 species), savanna (36 species), and temperate (10 species) biomes were found to be important in describing the global distribution of Cercidoideae, with many species occurring in more than one biome. Two phylogenetically isolated species-poor temperate ( Cercis ) and succulent ( Adenolobus ) biome lineages are sister to two broadly distributed species-rich tropical clades. Ancestral state reconstructions on a time-calibrated phylogeny suggest biome shifts occurred throughout the evolutionary history of the subfamily, with shifts between the succulent and rainforest biomes, from the rainforest to savanna, from the succulent to savanna biome, and one early occurring shift into (or from) the temperate biome. Of the 26 inferred shifts in biome, three are closely associated with a shift from the ancestral tree/shrub growth form to a liana or herbaceous perennial habit. Only three of the 13 inferred transcontinental dispersal events are associated with biome shifts. Overall, we find that biome shifts tend to occur within the same continent and that dispersals to new continents tend to occur within the same biome, but that nonetheless the biome-conserved and biogeographically structured Cercidoideae have been able to adapt to different environments through time.
Yang, M., Y. Qi, X. Xian, N. Yang, L. Xue, C. Zhang, H. Bao, and W. Liu. 2025. Coupling phylogenetic relatedness and distribution patterns provides insights into sandburs invasion risk assessment. Science of The Total Environment 958: 177819. https://doi.org/10.1016/j.scitotenv.2024.177819
Invasive sandburs (Cenchrus spp.), tropical and subtropical plants, are preferred in grasslands and agricultural ecosystems worldwide, causing significant crop production losses and reducing native biodiversity. Integrating phylogenetic relatedness and potentially suitable habitats (PSHs) to identify areas at risk of invasion is critical for prioritizing management efforts and supporting decisions on early warning and surveillance for sandbur invasions. However, despite risk assessments for individual Cenchrus species, the combined analysis of suitable habitats and phylogenetic relationships remains unclear. Therefore, this study aims to assess the invasion risk regions—including PSHs, species richness (SR), and phylogenetic structure—of eight invasive and potentially invasive sandburs in China, to quantify their niche overlap and identify driving factors. Our results showed that the phylogenetic distance of potentially invasive sandburs was closely related to invasive sandburs. Especially, three potentially invasive sandburs, C. ciliaris, C. setigerus, and C. myosuroides, possessed invasion potential resulting from close phylogenetic relatedness and high climatic suitability compared with invasive sandburs. The PSHs for invasive sandburs were distributed in wider regions except northwest China and had higher suitability to different environmental conditions. Potentially invasive sandburs were primarily located in southwestern and southern China driven by precipitation, especially, being inspected in Guangdong, Hainan, and Yunnan on numerous occasions, or potentially introduced in Guangxi, Taiwan, and Fujian for sandburs invasion hotspots. The phylogenetic clustering for eight sandburs occurred in the eastern, center, and southern coastal China, where higher SR in distribution was correlated with invasion hotspots. The SR and phylogenetic relatedness metrics were related to temperature and topographic variables. Totally, the expansion and invasion risk could be increased toward higher latitudes under future global warming. These findings offer novel insights for the prevention and management of sandburs invasions.