Science Enabled by Specimen Data

Rodríguez-Merino, A. 2023. Identifying and Managing Areas under Threat in the Iberian Peninsula: An Invasion Risk Atlas for Non-Native Aquatic Plant Species as a Potential Tool. Plants 12: 3069.

Predicting the likelihood that non-native species will be introduced into new areas remains one of conservation’s greatest challenges and, consequently, it is necessary to adopt adequate management measures to mitigate the effects of future biological invasions. At present, not much information is available on the areas in which non-native aquatic plant species could establish themselves in the Iberian Peninsula. Species distribution models were used to predict the potential invasion risk of (1) non-native aquatic plant species already established in the peninsula (32 species) and (2) those with the potential to invade the peninsula (40 species). The results revealed that the Iberian Peninsula contains a number of areas capable of hosting non-native aquatic plant species. Areas under anthropogenic pressure are at the greatest risk of invasion, and the variable most related to invasion risk is temperature. The results of this work were used to create the Invasion Risk Atlas for Alien Aquatic Plants in the Iberian Peninsula, a novel online resource that provides information about the potential distribution of non-native aquatic plant species. The atlas and this article are intended to serve as reference tools for the development of public policies, management regimes, and control strategies aimed at the prevention, mitigation, and eradication of non-native aquatic plant species.

Tataridas, A., M. Moreira, L. Frazão, P. Kanatas, N. Ota, and I. Travlos. 2023. Biology of Invasive Plants 5. Solanum elaeagnifolium Cav. Invasive Plant Science and Management: 1–53.

(no abstract available)

Rosas, M. R., R. A. Segovia, and P. C. Guerrero. 2023. Climatic Niche Dynamics of the Astereae Lineage and Haplopappus Species Distribution following Amphitropical Long-Distance Dispersal. Plants 12: 2721.

The tribe Astereae (Asteraceae) displays an American Amphitropical Disjunction. To understand the eco-evolutionary dynamics associated with a long-distance dispersal event and subsequent colonization of extratropical South America, we compared the climatic and geographic distributions of South American species with their closest North American relatives, focusing on the diverse South American Astereae genus, Haplopappus. Phylogenetic analysis revealed that two South American genera are closely related to seven North American genera. The climatic niche overlap (D = 0.5) between South and North America exhibits high stability (0.89), low expansion (0.12), and very low unfilling (0.04). The distribution of the North American species predicted the climatic and geographic space occupied by the South American species. In central Chile, Haplopappus showed a non-random latitudinal gradient in species richness, with Mediterranean climate variables mainly explaining the variation. Altitudinal patterns indicated peak richness at 600 m, declining at lower and higher elevations. These findings support climatic niche conservatism in shaping Haplopappus species distribution and diversity. Two major endemism zones were identified in central Chile and the southern region, with a transitional zone between Mediterranean and Temperate macro-bioclimates. Our results indicate strong niche conservatism following long-distance dispersal and slight niche expansion due to unique climatic variables in each hemisphere.

Graham, C. D. K., E. J. Forrestel, A. L. Schilmiller, A. T. Zemenick, and M. G. Weber. 2023. Evolutionary signatures of a trade-off in direct and indirect defenses across the wild grape genus Vitis. Evolution.

Evolutionary correlations between chemical defense and protection by mutualist bodyguards have been long predicted, but tests of these pattern remain rare. We use a phylogenetic framework to test for evolutionary correlations indicative of trade-offs or synergisms between direct defense in the form of plant secondary metabolism, and indirect defense in the form of leaf domatia, across 33 species in the wild grape genus, Vitis. We also performed a bioassay with a generalist herbivore to associate our chemical phenotypes with herbivore palatability. Finally, we tested whether defensive traits correlate with the average abiotic characteristics of each species’ contemporary range and whether these correlations were consistent with plant defense theory. We found a negative evolutionary correlation between domatia size and the diversity of secondary metabolites in Vitis leaf tissue across the genus, and also that leaves with a higher diversity and richness of secondary metabolites were less palatable to a generalist herbivore, consistent with a trade-off in chemical and mutualistic defense investment. Predictions from plant defense theory were not supported by associations between investment in defense phenotypes and abiotic variables. Our work demonstrates an evolutionary pattern indicative of a trade-off between indirect and direct defense strategies across the Vitis genus.

Babin, C. H., and C. D. Bell. 2023. The effects of climate change on cytotype distributions of endemic genera in the North American Coastal Plain. Plant Ecology & Diversity.

Background Approximately 33% of plant species face extinction due to climate change. Polyploidisation, a process resulting in more than two complete sets of chromosomes, may be promoted by periods of climate fluctuations. Ecological niche modelling (ENM) using occurrences of endemic plants in the North American Coastal Plain (NACP) biodiversity hotspot could be used to evaluate the potential effects of climate change on cytotype distributions. Aims We used known diploid and polyploid taxa endemic to the NACP to test hypotheses that diploids and polyploids differed in habitat preferences, considerable overlap existed between cytotypes, and polyploid distributions would increase under climate change projections. Methods We examined niche identity and overlap of 28 congeneric ploidy level pairs and performed ENM to evaluate how climate change could affect these groups. Results Congeneric ploidy level pairs differed significantly in niche identity, and overlap varied across genera. Eleven genera showed greater than 100% increases in habitat suitability and six genera showed almost no remaining suitable habitat in at least one future climate scenario. Conclusions With 70% of the species that showed substantial declines in projected suitable habitat being of conservation concern, we propose that future studies of these genera should be a primary focus in the NACP.

Geier, C., J. M. Bouchal, S. Ulrich, D. Uhl, T. Wappler, S. Wedmann, R. Zetter, et al. 2023. Potential pollinators and paleoecological aspects of Eocene Ludwigia (Onagraceae) from Eckfeld, Germany. Palaeoworld.

Paleogene flower-insect interactions and paleo-pollination processes are, in general, poorly understood and fossil evidence for such floral and faunal interactions are rarely reported. To shed light on angiosperm flower-insect interactions, we investigated several hundred fossil flowers and insects from the middle Eocene Fossil Lagerstätte of Eckfeld, Germany. During our work, we discovered a unique fossil Ludwigia flower (bud) with in situ pollen. The ecological preferences (climate, biome, habitat, etc.) of extant Ludwigia and the paleoecological configurations of the fossil plant assemblage support the taxonomic affiliation of the flower bud and an Eocene presence of Ludwigia in the vicinity of the former Lake Eckfeld. Today’s Ludwigia are mostly pollinated by Hymenoptera (bees). Therefore, we screened all currently known hymenopteran fossils from Eckfeld but found no Ludwigia pollen adhering to any of the specimens. On the contrary, we discovered Ludwigia pollen adhering to two different groups of Coleoptera (beetles). Our study suggests that during the Eocene of Europe, Ludwigia flowers were visited and probably pollinated by beetles and over time there was a shift in primary flower visitors/pollinators, from beetles to bees, sometime during the late Paleogene to Neogene.

McCoshum, S. M., and A. A. Agrawal. 2021. Ecology of Asclepias brachystephana: a plant for roadside and right-of-way management. Native Plants Journal 22: 256–267.

Declining insect abundance is occurring around the world, and some management projects are aiming to utilize roadsides and other right-of-ways as insect conservation areas. In the US, the decline of the monarch butterfly (Danaus plexippus Linnaeus [Nymphalidae]) populations has led to multiple studies focusing on a small number of milkweed species (Asclepias [Apocynaceae]) that occur in the major flyways. Here we survey a poorly studied milkweed, bract milkweed (A. brachystephana Engelm. ex Torr.), to document where it grows, which organisms make use of the plants, seed production, and concentrations of milkweed toxins (cardenolides) and to investigate if this species is suitable for roadside or right-of-ways management projects. Our results show that the range of A. brachystephana includes the Chihuahuan Desert and neighboring ecoregions. Plant populations were also observed occurring on roadsides and right-of-ways, rarely spreading into neighboring habitats. We document a variety of native pollinators utilizing floral resources and a few herbivores feeding on plant tissue. Chemical analyses show wild plants produce higher concentrations of toxic cardenolide than many other milkweed species. These data suggest A. brachystephana should be considered for roadside and right-of-way plantings, restoration projects, or seeding throughout the Chihuahuan Desert and adjoining ecoregions.

Clemente, K. J. E., and M. S. Thomsen. 2023. High temperature frequently increases facilitation between aquatic foundation species: a global meta‐analysis of interaction experiments between angiosperms, seaweeds, and bivalves. Journal of Ecology.

Many studies have quantified ecological impacts of individual foundation species (FS). However, emerging data suggest that FS often co‐occur, potentially inhibiting or facilitating one another, thereby causing indirect, cascading effects on surrounding communities. Furthermore, global warming is accelerating, but little is known about how interactions between co‐occurring FS vary with temperature.Shallow aquatic sedimentary systems are often dominated by three types of FS: slower‐growing clonal angiosperms, faster‐growing solitary seaweeds, and shell‐forming filter‐ and deposit‐feeding bivalves. Here, we tested the impacts of one FS on another by analyzing manipulative interaction experiments from 148 papers with a global meta‐analysis.We calculated 1,942 (non‐independent) Hedges’ g effect sizes, from 11,652 extracted values over performance responses, such as abundances, growths or survival of FS, and their associated standard deviations and replication levels. Standard aggregation procedures generated 511 independent Hedges’ g that was classified into six types of reciprocal impacts between FS.We found that (i) seaweeds had consistent negative impacts on angiosperms across performance responses, organismal sizes, experimental approaches, and ecosystem types; (ii) angiosperms and bivalves generally had positive impacts on each other (e.g., positive effects of angiosperms on bivalves were consistent across organismal sizes and experimental approaches, but angiosperm effect on bivalve growth and bivalve effect on angiosperm abundance were not significant); (iii) bivalves positively affected seaweeds (particularly on growth responses); (iv) there were generally no net effects of seaweeds on bivalves (except for positive effect on growth) or angiosperms on seaweeds (except for positive effect on ‘other processes’); and (v) bivalve interactions with other FS were typically more positive at higher temperatures, but angiosperm‐seaweed interactions were not moderated by temperature.Synthesis: Despite variations in experimental and spatiotemporal conditions, the stronger positive interactions at higher temperatures suggest that facilitation, particularly involving bivalves, may become more important in a future warmer world. Importantly, addressing research gaps, such as the scarcity of FS interaction experiments from tropical and freshwater systems and for less studied species, as well as testing for density‐dependent effects, could better inform aquatic ecosystem conservation and restoration efforts and broaden our knowledge of FS interactions in the Anthropocene.

Song, X.-J., G. Liu, Z.-Q. Qian, and Z.-H. Zhu. 2023. Niche Filling Dynamics of Ragweed (Ambrosia artemisiifolia L.) during Global Invasion. Plants 12: 1313.

Determining whether the climatic ecological niche of an invasive alien plant is similar to that of the niche occupied by its native population (ecological niche conservatism) is essential for predicting the plant invasion process. Ragweed (Ambrosia artemisiifolia L.) usually poses serious threats to human health, agriculture, and ecosystems within its newly occupied range. We calculated the overlap, stability, unfilling, and expansion of ragweed’s climatic ecological niche using principal component analysis and performed ecological niche hypothesis testing. The current and potential distribution of A. artemisiifolia was mapped by ecological niche models to identify areas in China with the highest potential risk of A. artemisiifolia invasion. The high ecological niche stability indicates that A. artemisiifolia is ecologically conservative during the invasion. Ecological niche expansion (expansion = 0.407) occurred only in South America. In addition, the difference between the climatic and native niches of the invasive populations is mainly the result of unpopulated niches. The ecological niche model suggests that southwest China, which has not been invaded by A. artemisiifolia, faces an elevated risk of invasion. Although A. artemisiifolia occupies a climatic niche distinct from native populations, the climatic niche of the invasive population is only a subset of the native niche. The difference in climatic conditions is the main factor leading to the ecological niche expansion of A. artemisiifolia during the invasion. Additionally, human activities play a substantial role in the expansion of A. artemisiifolia. Alterations in the A. artemisiifolia niche would help explain why this species is so invasive in China.

Reichgelt, T., A. Baumgartner, R. Feng, and D. A. Willard. 2023. Poleward amplification, seasonal rainfall and forest heterogeneity in the Miocene of the eastern USA. Global and Planetary Change 222: 104073.

Paleoclimate reconstructions can provide a window into the environmental conditions in Earth history when atmospheric carbon dioxide concentrations were higher than today. In the eastern USA, paleoclimate reconstructions are sparse, because terrestrial sedimentary deposits are rare. Despite this, the eastern USA has the largest population and population density in North America, and understanding the effects of current and future climate change is of vital importance. Here, we provide terrestrial paleoclimate reconstructions of the eastern USA from Miocene fossil floras. Additionally, we compare proxy paleoclimate reconstructions from the warmest period in the Miocene, the Miocene Climatic Optimum (MCO), to those of an MCO Earth System Model. Reconstructed Miocene temperatures and precipitation north of 35°N are higher than modern. In contrast, south of 35°N, temperatures and precipitation are similar to today, suggesting a poleward amplification effect in eastern North America. Reconstructed Miocene rainfall seasonality was predominantly higher than modern, regardless of latitude, indicating greater variability in intra-annual moisture transport. Reconstructed climates are almost uniformly in the temperate seasonal forest biome, but heterogeneity of specific forest types is evident. Reconstructed Miocene terrestrial temperatures from the eastern USA are lower than modeled temperatures and coeval Atlantic sea surface temperatures. However, reconstructed rainfall is consistent with modeled rainfall. Our results show that during the Miocene, climate was most different from modern in the northeastern states, and may suggest a drastic reduction in the meridional temperature gradient along the North American east coast compared to today.