Science Enabled by Specimen Data

Glos, R. A. E., and M. G. Weber. 2025. Multiple metrics of trichome diversity support independent evolutionary hypotheses in blazingstars (Mentzelia: Loasaceae). Evolution. https://doi.org/10.1093/evolut/qpaf054

Abstract Trichomes are diverse and functionally important plant structures that vary in response to selection pressures across ecological gradients and evolutionary timescales. Classic hypotheses predict higher investment in trichomes in arid environments, at lower latitudes, and in long-lived species, as well as shifts in trichome production to reduce conflict between defense traits and mutualisms. However, tests of these hypotheses often rely on aggregate trichome metrics and neglect the rich diversity of trichome phenotypes. Here, we collected data on fine-scale patterns of trichome length, density, and type in 52 species of blazingstars (Mentzelia: Loasaceae) and tested whether individual trichome traits were consistent with existing adaptive hypotheses. Contrary to longstanding hypotheses, we found that Mentzelia species tend to display greater trichome investment in less arid environments and at higher latitudes. Barbed trichomes are significantly less common on the upper surface of the leaf, possibly reducing defense-pollination conflict. Species with larger petals (a proxy for reliance on insect pollinators) also shift investment away from insect-trapping hairs on the underside of the leaf. Examining trichome types separately revealed that different morphologies show distinct responses to abiotic and biotic factors, demonstrating the need to consider multiple axes of diversity when testing adaptive hypotheses for complex traits.

Dahal, S., C. M. Siniscalchi, and R. A. Folk. 2025. A phylogenomic investigation into the biogeography of the Mexico–eastern U.S. disjunction in Symphyotrichum. American Journal of Botany 112. https://doi.org/10.1002/ajb2.70021

AbstractPremiseBiotic disjunctions have attracted scientific attention for the past 200 years. Despite being represented in many familiar plants (such as bald cypress, flowering dogwood, sweetgum, partridgeberry, etc.), the eastern North American (ENA)–Mexican (M) disjunction remains poorly understood. Major outstanding questions include the divergence times of taxa exhibiting the disjunction and environmental/geological processes that may underlie the disjunction. Symphyotrichum Nees (Asteraceae), one of the most diverse genera in the eastern USA, displays several examples of disjunct ENA–M taxa.MethodsWe generated target capture data using the Angiosperms353 baitset and generated the first well‐sampled phylogenomic hypothesis for Symphyotrichum and its close relatives. Focusing on S. subgenus Virgulus, we used MCMCTREE to perform divergence time estimation and the R package BioGeoBEARS to infer ancestral regions and biogeographic transitions between North America and Mexico. Finally, we used the ancestral niche reconstruction method Utremi to test for a role of historical aridification in generating the disjunction.ResultsOur molecular data suggest a recent radiation of Symphyotrichum at the Plio‐Pleistocene boundary (~2.5 mya), with early connections to Mexico in ancestral lineages that closed off shortly after and were followed by vicariance across this region. Except for some present‐day broadly distributed species, there is a complete lack of movement between ENA and M after ~0.5 mya.ConclusionsA reconstructed disjunct distribution of suitable habitat in Pleistocene climatic models corroborates results from biogeographic modeling and confirms glacial cycles are more likely to be associated with the breakup of ENA–M biogeographic connections.

Roberts, J., and S. Florentine. 2025. Current and future management challenges for globally invasive grasses, with special reference to Echinochloa crus‐galli, Panicum capillare and Sorghum halepense. Weed Research 65. https://doi.org/10.1111/wre.70005

Without appropriate and ongoing management interventions, weeds will continue to economically and environmentally disadvantage agricultural and natural ecosystems. For these management strategies to have long‐term sustained success, they need to carefully consider the biological aspects of the targeted weed. These strategies will also need to consider potential adaptations evolved by the targeted weed in response to a range of selection pressures imposed by anthropogenetic factors, climate change, changing environmental conditions, and inappropriate or unsuccessful management regimes. One group of weeds that has been observed to readily adapt to a wide range of conditions and has shown considerable challenges in their management is invasive grasses. Adding to these challenges is that several invasive grasses have also developed resistance to a range of herbicide modes of action, which, to date, has been one of the most commonly used methods of control. To address these challenges, this review explores the biology and ecology of the globally invasive annuals Echinochloa crus‐galli (Barnyard grass) and Panicum capillare (Witchgrass), and the perennial Sorghum halepense (Johnson grass) to identify (i) the most suitable management options for their control and (ii) potential research gaps that may assist in the future management direction of these species. Based on the findings of this review, it is clear that an integrated management approach that targets different aspects of the plant's biology, in combination with early detection and treatment and ongoing surveillance, is necessary for the long‐term control of these species. Although a combination of methods appears promising, further investigation still is required to evaluate their efficiency and long‐term success in a changing environment, all of which are further discussed within this review.

Hagelstam-Renshaw, C., J. J. Ringelberg, C. Sinou, W. Cardinal-McTeague, and A. Bruneau. 2024. Biome evolution in subfamily Cercidoideae (Leguminosae): a tropical arborescent clade with a relictual depauperate temperate lineage. Brazilian Journal of Botany 48. https://doi.org/10.1007/s40415-024-01058-z

Some plant lineages remain within the same biome over time (biome conservatism), whereas others seem to adapt more easily to new biomes. The c. 398 species (14 genera) of subfamily Cercidoideae (Leguminosae or Fabaceae) are found in many biomes around the world, particularly in the tropical regions of South America, Asia and Africa, and display a variety of growth forms (small trees, shrubs, lianas and herbaceous perennials). Species distribution maps derived from cleaned occurrence records were compiled and compared with existing biome maps and with the literature to assign species to biomes. Rainforest (144 species), succulent (44 species), savanna (36 species), and temperate (10 species) biomes were found to be important in describing the global distribution of Cercidoideae, with many species occurring in more than one biome. Two phylogenetically isolated species-poor temperate ( Cercis ) and succulent ( Adenolobus ) biome lineages are sister to two broadly distributed species-rich tropical clades. Ancestral state reconstructions on a time-calibrated phylogeny suggest biome shifts occurred throughout the evolutionary history of the subfamily, with shifts between the succulent and rainforest biomes, from the rainforest to savanna, from the succulent to savanna biome, and one early occurring shift into (or from) the temperate biome. Of the 26 inferred shifts in biome, three are closely associated with a shift from the ancestral tree/shrub growth form to a liana or herbaceous perennial habit. Only three of the 13 inferred transcontinental dispersal events are associated with biome shifts. Overall, we find that biome shifts tend to occur within the same continent and that dispersals to new continents tend to occur within the same biome, but that nonetheless the biome-conserved and biogeographically structured Cercidoideae have been able to adapt to different environments through time.

Bradshaw, C. D., D. L. Hemming, T. Mona, W. Thurston, M. K. Seier, D. P. Hodson, J. W. Smith, et al. 2024. Transmission pathways for the stem rust pathogen into Central and East Asia and the role of the alternate host, barberry. Environmental Research Letters 19: 114097. https://doi.org/10.1088/1748-9326/ad7ee3

Abstract After many decades of effective control of stem rust caused by the Puccinia graminis f.sp. tritici, (hereafter Pgt) the reported emergence of race TTKSK/Ug99 of Pgt in Uganda reignited concerns about epidemics worldwide because ∼90% of world wheat cultivars had no resistance to the new race. Since it was initially detected in Uganda in 1998, Ug99 variants have now been identified in thirteen countries in Africa and the Middle East. Stem rust has been a major problem in the past, and concern is increasing about the risk of return to Central and East Asia. Whilst control programs in North America and Europe relied on the use of resistant cultivars in combination with eradication of barberry (Berberis spp.), the alternate host required for the stem rust pathogen to complete its full lifecycle, the focus in East Asia was principally on the use of resistant wheat cultivars. Here, we investigate potential airborne transmission pathways for stem rust outbreaks in the Middle East to reach East Asia using an integrated modelling framework combining estimates of fungal spore deposition from an atmospheric dispersion model, environmental suitability for spore germination, and crop calendar information. We consider the role of mountain ranges in restricting transmission pathways, and we incorporate a representation of a generic barberry species into the lifecycle. We find viable transmission pathways to East Asia from the Middle East to the north via Central Asia and to the south via South Asia and that an initial infection in the Middle East could persist in East Asia for up to three years due to the presence of the alternate host. Our results indicate the need for further assessment of barberry species distributions in East Asia and appropriate methods for targeted surveillance and mitigation strategies should stem rust incidence increase in the Middle East region.

Li, X.-D., Y. Chen, C.-L. Zhang, J. Wang, X.-J. Song, X.-R. Zhang, Z.-H. Zhu, and G. Liu. 2024. Assessing the climatic niche changes and global invasion risk of Solanum elaeagnifolium in relation to human activities. Science of The Total Environment 954: 176723. https://doi.org/10.1016/j.scitotenv.2024.176723

As an invasive plant, Solanum elaeagnifolium has posed a serious threat to agriculture and natural ecosystems worldwide. In order to better manage and limit its spread, we established niche models by combining distribution information and climate data from the native and invasive ranges of S. elaeagnifolium to analyze its niche changes during its colonization. Additionally, we evaluated its global invasion risk. Our results showed that the distribution of S. elaeagnifolium is affected by temperature, precipitation, altitude, and human activities. Solanum elaeagnifolium exhibits different degrees of niche conservatism and niche shift in different invasion ranges.During the global invasion of S. elaeagnifolium, both the niche shift and conservatism were observed, however, niche shift was particularly significant due to the presence of unoccupied niches (niche unfilling). Solanum elaeagnifolium generally occupied a relatively stable niche. However, a notable expansion was observed primarily in Europe and China. In Australia and Africa, its niche largely remains a subset of its native niche. Compared to the niche observed in its native range, its realized niche in China and Europe has shifted toward lower temperature and higher precipitation levels. Conversely, in Africa, the niche has shifted toward lower precipitation levels, while in Australia, it has shifted toward higher temperature. Our model predicted that S. elaeagnifolium has high invasion potential in many countries and regions. The populations of S. elaeagnifolium in China and Africa have reached the adapted stage, while the populations in Australia and Europe are currently in the stabilization stage. In addition, our research suggests that the potential distribution of S. elaeagnifolium will expand further in the future as the climate warms. All in all, our study suggests that S. elaeagnifolium has high potential to invade globally. Due to its high invasive potential, global surveillance and preventive measures are necessary to address its spread.

Lin, P.-C., T.-Y. Chiang, M.-L. Chen, T.-W. Hsu, P.-W. Gean, S.-T. Cheng, and Y.-H. Hsu. 2024. Global prospects for cultivating Centella asiatica: An ecological niche modeling approach under current and future climatic scenarios. Journal of Agriculture and Food Research 18: 101380. https://doi.org/10.1016/j.jafr.2024.101380

Centella asiatica is a medicinal plant recognized for its various benefits contributed by its metabolites and has been used as a food supplement since prehistorical times across various cultures. Due to the reliance on natural populations of C. asiatica and the impacts of environmental factors on its yield and centelloside production, there is a need to identify suitable cultivation areas for this species. We employed ecological niche modelling with bioclimatic and soil variables to evaluate the suitability of cultivation under current and future climatic scenarios. Our results identified suitable areas for cultivating C. asiatica worldwide, indicating its potential for global commercial cultivation. However, the niche reconstruction of highly concentrated centelloside was restricted to South and Southeast Asia due to the lack of available data. When we projected the modelled niche of centelloside in these regions, we observed a lower occurrence probability in some areas, suggesting potential challenges in cost-effectiveness. Nevertheless, our results suggest a consistent future distribution for this species when we projected the modelled niche under future climates based on various socio-economic scenarios. This study not only identifies suitable areas to develop commercial cultivation for C. asiatica with highly concentrated centelloside, but also provides supporting evidence of the consistency of these areas, which can increase its sustainability.

González-Martínez, C. A., L. Lozada-Pérez, M. E. Olson, and L. O. Alvarado-Cárdenas. 2024. Sistemática de Urostephanus: resurrección de un taxón Mesoamericano de Gonolobinae (Apocynaceae, Asclepiadoideae), con ocho nuevas combinaciones. Acta Botanica Mexicana. https://doi.org/10.21829/abm131.2024.2302

Background and Aims: Recent studies have focused on resolving the systematics of the tribe Gonolobinae of the family Apocynaceae, as well as the controversial genus Matelea s.l. However, many species within Matelea s.l. have not been evaluated phylogenetically. This is the case of M. gonoloboides, previously recognized as the type species of Urostephanus, and other taxa with similar floral morphology. The aim of this study is to test the monophyly of Urostephanus, including some species with morphology similar to M. gonoloboides. Furthermore, we evaluate the taxonomic position of the Urostephanus clade within the subtribe Gonolobinae and compare morphology among related clades. Methods: To assess phylogenetic relationships within Gonolobinae, we downloaded sequences from four loci for 94 species of the subtribe from GenBank. We extracted DNA and sequenced the trnL-F intergenic spacer and rps16 intron from four species of Dictyanthus and six species of Matelea, which are considered to belong to Urostephanus. We reconstructed the phylogeny with Bayesian inference using the maximum clade credibility tree. Based on the phylogenetic pattern, we performed morphological comparisons between the clades Dictyanthus, Polystemma, and Urostephanus. Key results: Phylogenetic analysis recovered Urostephanus as monophyletic and sister to Dictyanthus. Based on this phylogenetic pattern and floral morphology, we resurrect the genus Urostephanus. We propose eight new combinations for the species included in the phylogeny, as well as for those that share floral morphological similarity. We designate two lectotypes. Finally, we discuss aspects of morphology between Urostephanus and closely related groups. Conclusions: The current circumscription of Matelea s.l. includes species with high morphological diversity. With the phylogenetic and morphological evidence among related taxa, we support the resurrection of Urostephanus, more than 120 years after its description. These results contribute to the resolution of the systematics of Gonolobinae in Mesoamerica.

Serra‐Diaz, J. M., J. Borderieux, B. Maitner, C. C. F. Boonman, D. Park, W. Guo, A. Callebaut, et al. 2024. occTest: An integrated approach for quality control of species occurrence data. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13847

Aim Species occurrence data are valuable information that enables one to estimate geographical distributions, characterize niches and their evolution, and guide spatial conservation planning. Rapid increases in species occurrence data stem from increasing digitization and aggregation efforts, and citizen science initiatives. However, persistent quality issues in occurrence data can impact the accuracy of scientific findings, underscoring the importance of filtering erroneous occurrence records in biodiversity analyses.InnovationWe introduce an R package, occTest, that synthesizes a growing open‐source ecosystem of biodiversity cleaning workflows to prepare occurrence data for different modelling applications. It offers a structured set of algorithms to identify potential problems with species occurrence records by employing a hierarchical organization of multiple tests. The workflow has a hierarchical structure organized in testPhases (i.e. cleaning vs. testing) that encompass different testBlocks grouping different testTypes (e.g. environmental outlier detection), which may use different testMethods (e.g. Rosner test, jacknife,etc.). Four different testBlocks characterize potential problems in geographic, environmental, human influence and temporal dimensions. Filtering and plotting functions are incorporated to facilitate the interpretation of tests. We provide examples with different data sources, with default and user‐defined parameters. Compared to other available tools and workflows, occTest offers a comprehensive suite of integrated tests, and allows multiple methods associated with each test to explore consensus among data cleaning methods. It uniquely incorporates both coordinate accuracy analysis and environmental analysis of occurrence records. Furthermore, it provides a hierarchical structure to incorporate future tests yet to be developed.Main conclusionsoccTest will help users understand the quality and quantity of data available before the start of data analysis, while also enabling users to filter data using either predefined rules or custom‐built rules. As a result, occTest can better assess each record's appropriateness for its intended application.

Putra, A. R., K. A. Hodgins, and A. Fournier‐Level. 2023. Assessing the invasive potential of different source populations of ragweed (Ambrosia artemisiifolia L.) through genomically informed species distribution modelling. Evolutionary Applications. https://doi.org/10.1111/eva.13632

The genetic composition of founding populations is likely to play a key role in determining invasion success. Individual genotypes may differ in habitat preference and environmental tolerance, so their ability to colonize novel environments can be highly variable. Despite the importance of genetic variation on invasion success, its influence on the potential distribution of invaders is rarely investigated. Here, we integrate population genomics and ecological niche models (ENMs) into a single framework to predict the distribution of globally invasive common ragweed (Ambrosia artemisiifolia) in Australia. We identified three genetic clusters for ragweed and used these to construct cluster‐specific ENMs and characterize within‐species niche differentiation. The potential range of ragweed in Australia depended on the genetic composition and continent of origin of the introduced population. Invaders originating from warmer, wetter climates had a broader potential distribution than those from cooler, drier ones. By quantifying this change, we identified source populations most likely to expand the ragweed distribution. As prevention remains the most effective method of invasive species management, our work provides a valuable way of ranking the threat posed by different populations to better inform management decisions.