Science Enabled by Specimen Data

Goicolea, T., A. Adde, O. Broennimann, J. I. García‐Viñas, A. Gastón, M. José Aroca‐Fernández, A. Guisan, and R. G. Mateo. 2024. Spatially‐nested hierarchical species distribution models to overcome niche truncation in national‐scale studies. Ecography. https://doi.org/10.1111/ecog.07328

Spatial truncation in species distribution models (SDMs) might cause niche truncation and model transferability issues, particularly when extrapolating models to non‐analog environmental conditions. While broad calibration extents reduce truncation issues, they usually overlook local ecological factors driving species distributions at finer resolution. Spatially‐nested hierarchical SDMs (HSDMs) address truncation by merging (a) a global model calibrated with broadly extended, yet typically low‐resolution, basic, and imprecise data; and (b) a regional model calibrated with spatially restricted but more precise and reliable data. This study aimed to examine HSDMs' efficacy to overcome spatial truncation in national‐scale studies. We compared two hierarchical strategies (‘covariate', which uses the global model output as a covariate for the regional model, and ‘multiply', which calculates the geometric mean of the global and regional models) and a non‐hierarchical strategy. The three strategies were compared in terms of niche truncation, environmental extrapolation, model performance, species' predicted distributions and shifts, and trends in species richness. We examined the consistency of the results over two study areas (Spain and Switzerland), 108 tree species, and four future climate scenarios. Only the non‐hierarchical strategy was susceptible to niche truncation, and environmental extrapolation issues. Hierarchical strategies, particularly the ‘covariate' one, presented greater model accuracy than non‐hierarchical strategies. The non‐hierarchical strategy predicted the highest overall values and the lowest decreases over time in species distribution ranges and richness. Differences between strategies were more evident in Switzerland, which was more affected by niche truncation issues. Spain was more negatively affected by climate change and environmental extrapolation. The ‘covariate' strategy exhibited higher model performance than the ‘multiply' one. However, uncertainties regarding model temporal transferability advocate for adopting and further examining multiple hierarchical approaches. This research underscores the importance of adopting spatially‐nested hierarchical SDMs given the compromised reliability of non‐hierarchical approaches due to niche truncation and extrapolation issues.

Bürger, M., and J. Chory. 2024. A potential role of heat‐moisture couplings in the range expansion of Striga asiatica. Ecology and Evolution 14. https://doi.org/10.1002/ece3.11332

Parasitic weeds in the genera Orobanche, Phelipanche (broomrapes) and Striga (witchweeds) have a devastating impact on food security across much of Africa, Asia and the Mediterranean Basin. Yet, how climatic factors might affect the range expansion of these weeds in the context of global environmental change remains unexplored. We examined satellite‐based environmental variables such as surface temperature, root zone soil moisture, and elevation, in relation to parasitic weed distribution and environmental conditions over time, in combination with observational data from the Global Biodiversity Information Facility (GBIF). Our analysis reveals contrasting environmental and altitude preferences in the genera Striga and Orobanche. Asiatic witchweed (Striga asiatica), which infests corn, rice, sorghum, and sugar cane crops, appears to be expanding its range in high elevation habitats. It also shows a significant association with heat‐moisture coupling events, the frequency of which is rising in such environments. These results point to geographical shifts in distribution and abundance in parasitic weeds due to climate change.

Noori, S., A. Hofmann, D. Rödder, M. Husemann, and H. Rajaei. 2024. A window to the future: effects of climate change on the distribution patterns of Iranian Zygaenidae and their host plants. Biodiversity and Conservation. https://doi.org/10.1007/s10531-023-02760-2

Climate change has been suggested as an important human-induced driver for the ongoing sixth mass extinction. As a common response to climate change, and particularly global warming, species move toward higher latitudes or shift uphill. Furthermore, rapid climate change impacts the biotic interactions of species, particularly in the case of Zygaenid moths which exhibit high specialization in both habitat and host plant preferences. Iranian Zygaenidae are relatively well-known and represent a unique fauna with a high endemism rate (46%) in the whole Palearctic; as such they are a good model group to study the impact of climate change on future distributions. In this study, we used species distribution models (SDMs) and ensembles of small models (ESMs) to investigate the impact of climate change on the future distribution of endemic and non-endemic species of zygaenids, as well as their larval host plants. Three different climate scenarios were applied to forecast the probable responses of the species to different climate change intensities. Our results suggest that the central and southern parts of the country will be impacted profoundly by climate change compared to the northern regions. Beyond this, most endemic species will experience an altitudinal shift from their current range, while non-endemic species may move towards higher latitudes. Considering that the regions with higher diversity of zygaenids are limited to mountainous areas, mainly within the Irano-Anatolian biodiversity hotspot, the identification of their local high diversity regions for conservation practices has a high priority.

Suicmez, B., and M. Avci. 2023. Distribution patterns of Quercus ilex from the last interglacial period to the future by ecological niche modeling. Ecology and Evolution 13. https://doi.org/10.1002/ece3.10606

The plants' geographic distribution is affected by natural or human‐induced climate change. Numerous studies at both the global and regional levels currently focus on the potential changes in plant distribution areas. Ecological niche modeling can help predict the likely distribution of species according to environmental variables under different climate scenarios. In this study, we predicted the potential geographic distributions of Quercus ilex L. (holm oak), a keystone species of the Mediterranean ecosystem, for the Last Interglacial period (LIG: ~130 Ka), the Last Glacial Maximum (LGM: ~22 Ka), mid‐Holocene (MH: ~6 Ka), and future climate scenarios (Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios) for 2050–2070 obtained from CCSM4 and MIROC‐ESM global climate scenarios respectively. The models were produced with algorithms from the R‐package “biomod2” and assessed by AUC of the receiver operating characteristic plot and true skill statistics. Aside from BIOCLIM (SRE), all model algorithms performed similarly and produced projections that are supported by good evaluation scores, although random forest (RF) slightly outperformed all the others. Additionally, distribution maps generated for the past period were validated through a comparison with pollen data acquired from the Neotoma Pollen Database. The results revealed that southern areas of the Mediterranean Basin, particularly coastal regions, served as long‐term refugia for Q. ilex, which was supported by fossil pollen data. Furthermore, the models suggest long‐term refugia role for Anatolia and we argue that Anatolia may have served as a founding population for the species. Future climate scenarios indicated that Q. ilex distribution varied by region, with some areas experiencing range contractions and others range expands. This study provides significant insights into the vulnerability of the Q. ilex to future climate change in the Mediterranean ecosystem and highlights the crucial role of Anatolia in the species' historical distribution.

Jin, D., Q. Yuan, X. Dai, G. Kozlowski, and Y. Song. 2023. Enhanced precipitation has driven the evolution of subtropical evergreen broad‐leaved forests in eastern China since the early Miocene: Evidence from ring‐cupped oaks. Journal of Systematics and Evolution. https://doi.org/10.1111/jse.13022

Subtropical evergreen broad‐leaved forest (EBLF) is the predominant vegetation type in eastern China. However, the majority of the region it covers in eastern China was an arid area during the Paleogene. The temporal history and essential factors involved in the evolution of subtropical EBLFs in eastern China remain enigmatic. Here we report on the niche evolution of Quercus section Cyclobalanopsis, which appeared in south China and Japan during the Eocene and became a dominant component of subtropical EBLFs since the Miocene in eastern Asia, using integrative analysis of occurrences, climate data and a dated phylogeny of 35 species in Cyclobalanopsis. Species within clades Cyclobalanoides, Lamellosa, and Helferiana mainly exist in the Himalaya–Hengduan region, adapting to a plateau climate, while species within the other clades mainly live in eastern China under the control of the East Asian monsoon. Reconstructed history showed that significant divergence of climatic tolerance in Cyclobalanopsis began around 19 million years ago (Ma) in the early Miocene. Simultaneously, disparities in precipitation of wettest/warmest quarter and annual precipitation were markedly enhanced in Cyclobalanopsis, especially in the recent eastern clades. During the Miocene, the marked radiation of Cyclobalanopsis and many other dominant taxa of subtropical EBLFs strongly suggest the rapid formation and expansion of subtropical EBLFs in eastern China. Our research highlights that the intensification of the East Asian monsoon and subsequent occupation of new niches by the ancient clades already present in the south may have jointly promoted the formation of subtropical EBLFs in eastern China since the early Miocene.

Van der Meersch, V., and I. Chuine. 2023. Estimating process‐based model parameters from species distribution data using the evolutionary algorithm CMA‐ES. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210x.14119

Two main types of species distribution models are used to project species range shifts in future climatic conditions: correlative and process‐based models. Although there is some continuity between these two types of models, they are fundamentally different in their hypotheses (statistical relationships vs. mechanistic relationships) and their calibration methods (SDMs tend to be occurrence data driven while PBMs tend to be prior driven).One of the limitations to the use of process‐based models is the difficulty to parameterize them for a large number of species compared to correlative SDMs. We investigated the feasibility of using an evolutionary algorithm (called covariance matrix adaptation evolution strategy, CMA‐ES) to calibrate process‐based models using species distribution data. This method is well established in some fields (robotics, aerodynamics, etc.), but has never been used, to our knowledge, in ecology, despite its ability to deal with very large space dimensions. Using tree species occurrence data across Europe, we adapted the CMA‐ES algorithm to find appropriate values of model parameters. We estimated simultaneously 27–77 parameters of two process‐based models simulating forest tree's ecophysiology for three species with varying range sizes and geographical distributions.CMA‐ES provided parameter estimates leading to better prediction of species distribution than parameter estimates based on expert knowledge. Our results also revealed that some model parameters and processes were strongly dependent, and different parameter combinations could therefore lead to high model accuracy.We conclude that CMA‐ES is an efficient state‐of‐the‐art method to calibrate process‐based models with a large number of parameters using species occurrence data. Inverse modelling using CMA‐ES is a powerful method to calibrate process‐based parameters which can hardly be measured. However, the method does not warranty that parameter estimates are correct because of several sources of bias, similarly to correlative models, and expert knowledge is required to validate results.

Wilson Brown, M. K., and E. B. Josephs. 2023. Evaluating niche changes during invasion with seasonal models in Capsella bursa‐pastoris. American Journal of Botany. https://doi.org/10.1002/ajb2.16140

Premise Researchers often use ecological niche models to predict where species might establish and persist under future or novel climate conditions. However, these predictive methods assume species have stable niches across time and space. Furthermore, ignoring the time of occurrence data can obscure important information about species reproduction and ultimately fitness. Here, we assess compare ecological niche models generated from full-year averages to seasonal models Methods In this study, we generate full-year and monthly ecological niche models for Capsella bursa-pastoris in Europe and North America to see if we can detect changes in the seasonal niche of the species after long-distance dispersal. Key Results We find full-year ecological niche models have low transferability across continents and there are continental differences in the climate conditions that influence the distribution of C. bursa-pastoris. Monthly models have greater predictive accuracy than full-year models in cooler seasons, but no monthly models are able to predict North American summer occurrences very well. Conclusions The relative predictive ability of European monthly models compared to North American monthly models suggests a change in the seasonal timing between the native range to the non-native range. These results highlight the utility of ecological niche models at finer temporal scales in predicting species distributions and unmasking subtle patterns of evolution.

Perez‐Navarro, M. A., O. Broennimann, M. A. Esteve, G. Bagaria, A. Guisan, and F. Lloret. 2022. Comparing climatic suitability and niche distances to explain populations responses to extreme climatic events. Ecography. https://doi.org/10.1111/ecog.06263

Habitat suitability calculated from species distribution models (SDMs) has been used to assess population performance, but empirical studies have provided weak or inconclusive support to this approach. Novel approaches measuring population distances to niche centroid and margin in environmental space have been recently proposed to explain population performance, particularly when populations experience exceptional environmental conditions that may place them outside of the species niche. Here, we use data of co‐occurring species' decay, gathered after an extreme drought event occurring in the southeast of the Iberian Peninsula which highly affected rich semiarid shrubland communities, to compare the relationship between population decay (mortality and remaining green canopy) and 1) distances between populations' location and species niche margin and centroid in the environmental space, and 2) climatic suitability estimated from frequently used SDMs (here MaxEnt) considering both the extreme climatic episode and the average reference climatic period before this. We found that both SDMs‐derived suitability and distances to species niche properly predict populations performance when considering the reference climatic period; but climatic suitability failed to predict performance considering the extreme climate period. In addition, while distance to niche margins accurately predict both mortality and remaining green canopy responses, centroid distances failed to explain mortality, suggesting that indexes containing information about the position to niche margin (inside or outside) are better to predict binary responses. We conclude that the location of populations in the environmental space is consistent with performance responses to extreme drought. Niche distances appear to be a more efficient approach than the use of climate suitability indices derived from more frequently used SDMs to explain population performance when dealing with environmental conditions that are located outside the species environmental niche. The use of this alternative metrics may be particularly useful when designing conservation measures to mitigate impacts of shifting environmental conditions.

Marcussen, T., H. E. Ballard, J. Danihelka, A. R. Flores, M. V. Nicola, and J. M. Watson. 2022. A Revised Phylogenetic Classification for Viola (Violaceae). Plants 11: 2224. https://doi.org/10.3390/plants11172224

The genus Viola (Violaceae) is among the 40–50 largest genera among angiosperms, yet its taxonomy has not been revised for nearly a century. In the most recent revision, by Wilhelm Becker in 1925, the then-known 400 species were distributed among 14 sections and numerous unranked groups. Here, we provide an updated, comprehensive classification of the genus, based on data from phylogeny, morphology, chromosome counts, and ploidy, and based on modern principles of monophyly. The revision is presented as an annotated global checklist of accepted species of Viola, an updated multigene phylogenetic network and an ITS phylogeny with denser taxon sampling, a brief summary of the taxonomic changes from Becker’s classification and their justification, a morphological binary key to the accepted subgenera, sections and subsections, and an account of each infrageneric subdivision with justifications for delimitation and rank including a description, a list of apomorphies, molecular phylogenies where possible or relevant, a distribution map, and a list of included species. We distribute the 664 species accepted by us into 2 subgenera, 31 sections, and 20 subsections. We erect one new subgenus of Viola (subg. Neoandinium, a replacement name for the illegitimate subg. Andinium), six new sections (sect. Abyssinium, sect. Himalayum, sect. Melvio, sect. Nematocaulon, sect. Spathulidium, sect. Xanthidium), and seven new subsections (subsect. Australasiaticae, subsect. Bulbosae, subsect. Clausenianae, subsect. Cleistogamae, subsect. Dispares, subsect. Formosanae, subsect. Pseudorupestres). Evolution within the genus is discussed in light of biogeography, the fossil record, morphology, and particular traits. Viola is among very few temperate and widespread genera that originated in South America. The biggest identified knowledge gaps for Viola concern the South American taxa, for which basic knowledge from phylogeny, chromosome counts, and fossil data is virtually absent. Viola has also never been subject to comprehensive anatomical study. Studies into seed anatomy and morphology are required to understand the fossil record of the genus.

Lu, L.-L., B.-H. Jiao, F. Qin, G. Xie, K.-Q. Lu, J.-F. Li, B. Sun, et al. 2022. Artemisia pollen dataset for exploring the potential ecological indicators in deep time. Earth System Science Data 14: 3961–3995. https://doi.org/10.5194/essd-14-3961-2022

Abstract. Artemisia, along with Chenopodiaceae, is the dominant component growing in the desert and dry grassland of the Northern Hemisphere. Artemisia pollen with its high productivity, wide distribution, and easy identification is usually regarded as an eco-indicator for assessing aridity and distinguishing grassland from desert vegetation in terms of the pollen relative abundance ratio of Chenopodiaceae/Artemisia (C/A). Nevertheless, divergent opinions on the degree of aridity evaluated by Artemisia pollen have been circulating in the palynological community for a long time. To solve the confusion, we first selected 36 species from nine clades and three outgroups of Artemisia based on the phylogenetic framework, which attempts to cover the maximum range of pollen morphological variation. Then, sampling, experiments, photography, and measurements were taken using standard methods. Here, we present pollen datasets containing 4018 original pollen photographs, 9360 pollen morphological trait measurements, information on 30 858 source plant occurrences, and corresponding environmental factors. Hierarchical cluster analysis on pollen morphological traits was carried out to subdivide Artemisia pollen into three types. When plotting the three pollen types of Artemisia onto the global terrestrial biomes, different pollen types of Artemisia were found to have different habitat ranges. These findings change the traditional concept of Artemisia being restricted to arid and semi-arid environments. The data framework that we designed is open and expandable for new pollen data of Artemisia worldwide. In the future, linking pollen morphology with habitat via these pollen datasets will create additional knowledge that will increase the resolution of the ecological environment in the geological past. The Artemisia pollen datasets are freely available at Zenodo (https://doi.org/10.5281/zenodo.6900308; Lu et al., 2022).