Science Enabled by Specimen Data

Pang, S. E. H., J. W. F. Slik, D. Zurell, and E. L. Webb. 2023. The clustering of spatially associated species unravels patterns in tropical tree species distributions. Ecosphere 14. https://doi.org/10.1002/ecs2.4589

Complex distribution data can be summarized by grouping species with similar or overlapping distributions to unravel spatial patterns and separate trends (e.g., of habitat loss) among spatially unique groups. However, such classifications are often heuristic, lacking the transparency, objectivity, and data‐driven rigor of quantitative methods, which limits their interpretability and utility. Here, we develop and illustrate the clustering of spatially associated species, a methodological framework aimed at statistically classifying species using explicit measures of interspecific spatial association. We investigate several association indices and clustering algorithms and show how these methodological choices drive substantial variations in clustering outcomes and performance. To facilitate robust decision‐making, we provide guidance on choosing methods appropriate to one's study objective(s). As a case study, we apply our framework to modeled tree distributions in Borneo and subsequently evaluate the impact of land‐cover change on separate species groupings. Based on the modeled distribution of 390 tree species prior to anthropogenic land‐cover changes, we identified 11 distinct clusters that unraveled ecologically meaningful patterns in Bornean tree distributions. These clusters then enabled us to quantify trends of habitat loss tied to each of those specific clusters, allowing us to discern particularly vulnerable species clusters and their distributions. This study demonstrates the advantages of adopting quantitatively derived clusters of spatially associated species and elucidates the potential of resultant clusters as a spatially explicit framework for investigating distribution‐related questions in ecology, biogeography, and conservation. By adopting our methodological framework and publicly available codes, practitioners can leverage the ever‐growing abundance of distribution data to better understand complex spatial patterns among species distributions and the disparate effects of global changes on biodiversity.

Song, Z., Y. H. Fu, Y. Du, and Z. Huang. 2021. Global warming increases latitudinal divergence in flowering dates of a perennial herb in humid regions across eastern Asia. Agricultural and Forest Meteorology 296: 108209. https://doi.org/10.1016/j.agrformet.2020.108209

Latitudinal patterns can reveal important ecological processes. The temporal overlap and divergence in flowering along latitudinal gradients is tightly related to intraspecific gene flow and interspecific interactions. Recent studies have predicted that global warming has led to more uniform spring …

Holzmeyer, L., A.-K. Hartig, K. Franke, W. Brandt, A. N. Muellner-Riehl, L. A. Wessjohann, and J. Schnitzler. 2020. Evaluation of plant sources for antiinfective lead compound discovery by correlating phylogenetic, spatial, and bioactivity data. Proceedings of the National Academy of Sciences 117: 12444–12451. https://doi.org/10.1073/pnas.1915277117

Antibiotic resistance and viral diseases are rising around the world and are becoming major threats to global health, food security, and development. One measure that has been suggested to mitigate this crisis is the development of new antibiotics. Here, we provide a comprehensive evaluation of the …

Cámara-Leret, R., N. Raes, P. Roehrdanz, Y. De Fretes, C. D. Heatubun, L. Roeble, A. Schuiteman, et al. 2019. Climate change threatens New Guinea’s biocultural heritage. Science Advances 5. https://doi.org/10.1126/sciadv.aaz1455

New Guinea is the most biologically and linguistically diverse tropical island on Earth, yet the potential impacts of climate change on its biocultural heritage remain unknown. Analyzing 2353 endemic plant species distributions, we find that 63% of species are expected to have smaller geographic ran…