Science Enabled by Specimen Data

Issaly, E. A., M. C. Baranzelli, N. Rocamundi, A. M. Ferreiro, L. A. Johnson, A. N. Sérsic, and V. Paiaro. 2023. Too much water under the bridge: unraveling the worldwide invasion of the tree tobacco through genetic and ecological approaches. Biological Invasions.

Understanding how, and from where, invasive species were introduced is critical for revealing the invasive mechanism, explaining the invasion success, and providing crucial insights for effective management. Here, we combined a phylogeographic approach with ecological niche modeling comparisons to elucidate the introduction mode and source of Nicotiana glauca , a native South American species that is now invasive worldwide. We tested three different scenarios based on the invasion source—random native, restricted native, and bridgehead invasive—considering genetic diversity and climatic niche comparisons among native and invaded areas. We found three genetic lineages geographically and climatically differentiated within the native range. Only one of these genetic groups contained the invasive haplotypes, but showed no climatic niche overlap with any invaded area. Conversely, one invaded area located in western South America, with more genetic diversity than other invaded areas but less than the native range, showed climatic niche overlap with almost all other invaded areas worldwide. These findings indicate that N. glauca first likely invaded the southernmost areas beyond its native range, forming a bridgehead invasive source, from which the species subsequently invaded other regions around the world. Invasiveness would have been fostered by changes in the environmental preferences of the species in the bridgehead area, towards drier, colder and less seasonal climates, becoming the actual source of invasion to areas climatically similar throughout the world. The fine scale resolution analyses combining genetic and climatic approaches within the native range were essential to illuminating the introduction scenario of this invasive species.

Calvente, A., A. P. Alves da Silva, D. Edler, F. A. Carvalho, M. R. Fantinati, A. Zizka, and A. Antonelli. 2023. Spiny but photogenic: amateur sightings complement herbarium specimens to reveal the bioregions of cacti. American Journal of Botany.

Premise: Cacti are characteristic elements of the Neotropical flora and of major interest for biogeographic, evolutionary, and ecological studies. Here we test global biogeographic boundaries for Neotropical Cactaceae using specimen‐based occurrences coupled with data from visual observations, as a means to tackle the known collection biases in the family.MethodsSpecies richness and record density were assessed for preserved specimens and human observations and a bioregional scheme tailored to Cactaceae was produced using the interactive web application Infomap Bioregions based on data from 261,272 point records cleaned through automated and manual steps.Key ResultsWe find that areas in Mexico and southwestern USA, Eastern Brazil and along the Andean region have the greatest density of records and the highest species richness. Human observations complement information from preserved specimens substantially, especially along the Andes. We propose 24 cacti bioregions, among which the most species‐rich are: northern Mexico/southwestern USA, central Mexico, southern central Mexico, Central America, Mexican Pacific coast, central and southern Andes, northwestern Mexico/extreme southwestern USA, southwestern Bolivia, northeastern Brazil, Mexico/Baja California.ConclusionsThe bioregionalization proposed shows biogeographical boundaries specific to cacti, and can thereby aid further evolutionary, biogeographic, and ecological studies by providing a validated framework for further analyses. This classification builds upon, and is distinctive from, other expert‐derived regionalization schemes for other taxa. Our results showcase how observation data, including citizen‐science records, can complement traditional specimen‐based data for biogeographic research, particularly for taxa with specific specimen collection and preservation challenges and those that are threatened or internationally protected.This article is protected by copyright. All rights reserved.

Luza, A. L., A. V. Rodrigues, L. Mamalis, and V. Zulian. 2023. Spatial distribution of the greater rhea, Rhea americana (Linnaeus, 1758), in Rio Grande do Sul, southern Brazil: citizen-science data, probabilistic mapping, and comparison with expert knowledge. Ornithology Research.

The popularization of citizen-science platforms has increased the amount of data available in a fine spatial and temporal resolution, which can be used to fill distribution knowledge gaps through probabilistic maps. In this study, we gathered expert-based information and used species distribution models to produce two independent maps of the greater rhea ( Rhea americana , Rheiformes, Rheidae) distribution in the state of Rio Grande do Sul, Brazil. We integrated municipality level detection/non-detection data from five citizen-science datasets into a Bayesian site occupancy model, accounting for false negatives, sampling effort, habitat covariates, and spatial autocorrelation. We addressed whether habitat (grassland and crop field cover, number of rural properties) and spatial autocorrelation explains the realized occurrence of the species and compared model-based and expert-based occurrence maps. The mean estimated percentage of occupied municipalities was 48% (239 out of 497 municipalities), whereas experts declared 21% of the municipalities (103) as occupied by the species. While both mapping approaches showed greater rhea presence in most municipalities of the Pampa biome, they disagreed in the majority of the municipalities in the Atlantic Forest, where more fieldwork must be undertaken. The greater rhea distribution was exclusively explained by the spatial autocorrelation component, suggesting that the species expanded its distribution towards the north of the state, reaching the Atlantic Forest, following deforestation and agriculture expansion.

Freire-Fierro, A., F. Forest, D. S. Devey, J. F. B. Pastore, J. W. Horn, X.-J. Ge, Z. Wang, et al. 2023. Monnina (Polygalaceae), a New World monophyletic genus full of contrasts. Botanical Journal of the Linnean Society.

Endemic to the Neotropics, Monnina is the second largest genus of Polygalaceae, yet little is known about its phylogenetic history, biogeography, and morphological character evolution. To address these knowledge gaps, we conducted Bayesian and maximum likelihood (ML) analyses of nuclear ITS and plastid trnL–F regions to test the monophyly of Monnina s.l. We used this phylogenetic framework to (i) infer divergence time estimates of lineages within the genus and reconstruct their historical biogeography; (ii) reconstruct the evolution of morphological characters of putative ecological and evolutionary importance in Monnina; and (iii) test for correlations between our phylogenetic hypothesis and environmental data. Our results reveal that Monnina is monophyletic with an indehiscent, 1–2-seeded fruit as a synapomorphy for the genus. We identify six clades within Monnina based on our combined phylogenetic results: Clades A, B, and D are primarily distributed in southern and eastern South America, Clades C and E are primarily Central Andean, and Clade F is chiefly distributed in the Northern Andes and Central America. The ancestor of the Monnina stem lineage dispersed from Australia/Africa to South America during the late Eocene to early Oligocene. The divergences of major lineages within the genus began in the early Miocene. We inferred the most recent common ancestor of Monnina to be an herbaceous plant with one-seeded samaroid fruits. The origins of fleshy fruits and shrubby habits are phylogenetically correlated within Monnina, and their concerted convergent evolution may have promoted increased net diversification rates in the two most species-rich subclades of the genus.

Reichgelt, T., A. Baumgartner, R. Feng, and D. A. Willard. 2023. Poleward amplification, seasonal rainfall and forest heterogeneity in the Miocene of the eastern USA. Global and Planetary Change 222: 104073.

Paleoclimate reconstructions can provide a window into the environmental conditions in Earth history when atmospheric carbon dioxide concentrations were higher than today. In the eastern USA, paleoclimate reconstructions are sparse, because terrestrial sedimentary deposits are rare. Despite this, the eastern USA has the largest population and population density in North America, and understanding the effects of current and future climate change is of vital importance. Here, we provide terrestrial paleoclimate reconstructions of the eastern USA from Miocene fossil floras. Additionally, we compare proxy paleoclimate reconstructions from the warmest period in the Miocene, the Miocene Climatic Optimum (MCO), to those of an MCO Earth System Model. Reconstructed Miocene temperatures and precipitation north of 35°N are higher than modern. In contrast, south of 35°N, temperatures and precipitation are similar to today, suggesting a poleward amplification effect in eastern North America. Reconstructed Miocene rainfall seasonality was predominantly higher than modern, regardless of latitude, indicating greater variability in intra-annual moisture transport. Reconstructed climates are almost uniformly in the temperate seasonal forest biome, but heterogeneity of specific forest types is evident. Reconstructed Miocene terrestrial temperatures from the eastern USA are lower than modeled temperatures and coeval Atlantic sea surface temperatures. However, reconstructed rainfall is consistent with modeled rainfall. Our results show that during the Miocene, climate was most different from modern in the northeastern states, and may suggest a drastic reduction in the meridional temperature gradient along the North American east coast compared to today.

Amaral, D. T., I. A. S. Bonatelli, M. Romeiro-Brito, E. M. Moraes, and F. F. Franco. 2022. Spatial patterns of evolutionary diversity in Cactaceae show low ecological representation within protected areas. Biological Conservation 273: 109677.

Mapping biodiversity patterns across taxa and environments is crucial to address the evolutionary and ecological dimensions of species distribution, suggesting areas of particular importance for conservation purposes. Within Cactaceae, spatial diversity patterns are poorly explored, as are the abiotic factors that may predict these patterns. We gathered geographic and genetic data from 921 cactus species by exploring both the occurrence and genetic databases, which are tightly associated with drylands, to evaluate diversity patterns, such as phylogenetic diversity and endemism, paleo-, neo-, and superendemism, and the environmental predictor variables of such patterns in a global analysis. Hotspot areas of cacti diversity are scattered along the Neotropical and Nearctic regions, mainly in the desertic portion of Mesoamerica, Caribbean Island, and the dry diagonal of South America. The geomorphological features of these regions may create a complexity of areas that work as locally buffered zones over time, which triggers local events of diversification and speciation. Desert and dryland/dry forest areas comprise paleo- and superendemism and may act as both museums and cradles of species, displaying great importance for conservation. Past climates, topography, soil features, and solar irradiance seem to be the main predictors of distinct endemism types. The hotspot areas that encompass a major part of the endemism cells are outside or poorly covered by formal protection units. The current legally protected areas are not able to conserve the evolutionary diversity of cacti. Given the rapid anthropogenic disturbance, efforts must be reinforced to monitor biodiversity and the environment and to define/plan current and new protected areas.

Williams, C. J. R., D. J. Lunt, U. Salzmann, T. Reichgelt, G. N. Inglis, D. R. Greenwood, W. Chan, et al. 2022. African Hydroclimate During the Early Eocene From the DeepMIP Simulations. Paleoceanography and Paleoclimatology 37.

The early Eocene (∼56‐48 million years ago) is characterised by high CO2 estimates (1200‐2500 ppmv) and elevated global temperatures (∼10 to 16°C higher than modern). However, the response of the hydrological cycle during the early Eocene is poorly constrained, especially in regions with sparse data coverage (e.g. Africa). Here we present a study of African hydroclimate during the early Eocene, as simulated by an ensemble of state‐of‐the‐art climate models in the Deep‐time Model Intercomparison Project (DeepMIP). A comparison between the DeepMIP pre‐industrial simulations and modern observations suggests that model biases are model‐ and geographically dependent, however these biases are reduced in the model ensemble mean. A comparison between the Eocene simulations and the pre‐industrial suggests that there is no obvious wetting or drying trend as the CO2 increases. The results suggest that changes to the land sea mask (relative to modern) in the models may be responsible for the simulated increases in precipitation to the north of Eocene Africa. There is an increase in precipitation over equatorial and West Africa and associated drying over northern Africa as CO2 rises. There are also important dynamical changes, with evidence that anticyclonic low‐level circulation is replaced by increased south‐westerly flow at high CO2 levels. Lastly, a model‐data comparison using newly‐compiled quantitative climate estimates from palaeobotanical proxy data suggests a marginally better fit with the reconstructions at lower levels of CO2.

Tazikeh, S., S. Zendehboudi, S. Ghafoori, A. Lohi, and N. Mahinpey. 2022. Algal bioenergy production and utilization: Technologies, challenges, and prospects. Journal of Environmental Chemical Engineering 10: 107863.

Increasing demand for energy and also escalating environmental pollution show that industries cannot rely on fossil fuels, and it is necessary to adopt an alternative. In recent decades, algal bioenergy has emerged as a renewable energy source in different industries. However, algal bioenergy production is costly and faces different challenges and unknown aspects that need to be addressed. Experimental and theoretical research works have revealed that the efficiency of algal bioenergy production is influenced by several factors, including algae species, temperature, light, CO2, cultivation method, and available nutrients. Algal bioenergy production on commercial scales in cost-effective ways is the main aim of industries to compete with fossil fuels. Hence, it is vital to have a comprehensive knowledge of the previous findings and attain a suitable pathway for future studies/activities. In the present review paper, the potential of microalgae bioenergy production, influential parameters, previous experimental and theoretical studies, and different methods for microalgae biofuel production from cultivation stage to utilization are reviewed. Moreover, this work discusses the engineering activities and economic analysis of microalgae cultivation to utilization, and also useful suggestions are made for future research works. The outcomes of the present work confirm that innovative engineering methods can overcome scale-up challenging, increase the rate of production, and decrease the cost of algae bioenergy production. Hence, there is no long way to produce cost-effective algae bioenergy on commercial scales.

Sarker, U., Y.-P. Lin, S. Oba, Y. Yoshioka, and K. Hoshikawa. 2022. Prospects and potentials of underutilized leafy Amaranths as vegetable use for health-promotion. Plant Physiology and Biochemistry 182: 104–123.

Climate change causes environmental variation worldwide, which is one of the most serious threats to global food security. In addition, more than 2 billion people in the world are reported to suffer from serious malnutrition, referred to as ‘hidden hunger.’ Dependence on only a few crops could lead to the loss of genetic diversity and high fragility of crop breeding in systems adapting to global scale climate change. The exploitation of underutilized species and genetic resources, referred to as orphan crops, could be a useful approach for resolving the issue of adaptability to environmental alteration, biodiversity preservation, and improvement of nutrient quality and quantity to ensure food security. Moreover, the use of these alternative crops will help to increase the human health benefits and the income of farmers in developing countries. In this review, we highlight the potential of orphan crops, especially amaranths, for use as vegetables and health-promoting nutritional components. This review highlights promising diversified sources of amaranth germplasms, their tolerance to abiotic stresses, and their nutritional, phytochemical, and antioxidant values for vegetable purposes. Betalains (betacyanins and betaxanthins), unique antioxidant components in amaranth vegetables, are also highlighted regarding their chemodiversity across amaranth germplasms and their stability and degradation. In addition, we discuss the physiological functions, antioxidant, antilipidemic, anticancer, and antimicrobial activities, as well as the biosynthesis pathway, molecular, biochemical, genetics, and genomic mechanisms of betalains in detail.

Campbell, C., G. Granath, and H. Rydin. 2021. Climatic drivers of Sphagnum species distributions. Frontiers of Biogeography 13.

Peatmosses(genus Sphagnum) dominate most Northern mires and show distinct distributional limits in Europe despite having efficient dispersal and few dispersal barriers. This pattern indicates that Sphagnum species distributions are strongly linked to climate. Sphagnumdominated mires have been the la…