Science Enabled by Specimen Data

Allstädt, F. J., Koutsodendris, A., Appel, E., Rösler, W., Reichgelt, T., Kaboth-Bahr, S., … Pross, J. (2021). Late Pliocene to early Pleistocene climate dynamics in western North America based on a new pollen record from paleo-Lake Idaho. Palaeobiodiversity and Palaeoenvironments. doi:10.1007/s12549-020-00460-1 https://doi.org/10.1007/s12549-020-00460-1

Marked by the expansion of ice sheets in the high latitudes, the intensification of Northern Hemisphere glaciation across the Plio/Pleistocene transition at ~ 2.7 Ma represents a critical interval of late Neogene climate evolution. To date, the characteristics of climate change in North America duri…

Magri, D., Parra, I., Di Rita, F., Ni, J., Shichi, K., & Worth, J. R. P. (2020). Linking worldwide past and present conifer vulnerability. Quaternary Science Reviews, 250, 106640. doi:10.1016/j.quascirev.2020.106640 https://doi.org/10.1016/j.quascirev.2020.106640

Inventories of species recently extinct or threatened with extinction may be found in global databases. However, despite the large number of published fossil based-studies, specific databases on the vulnerability of species in the past are not available. We compiled a worldwide database of published…

Yi, S., Jun, C.-P., Jo, K., Lee, H., Kim, M.-S., Lee, S. D., … Lim, J. (2020). Asynchronous multi-decadal time-scale series of biotic and abiotic responses to precipitation during the last 1300 years. Scientific Reports, 10(1). doi:10.1038/s41598-020-74994-x https://doi.org/10.1038/s41598-020-74994-x

Loading...

Zizka, A., Antunes Carvalho, F., Calvente, A., Rocio Baez-Lizarazo, M., Cabral, A., Coelho, J. F. R., … Antonelli, A. (2020). No one-size-fits-all solution to clean GBIF. PeerJ, 8, e9916. doi:10.7717/peerj.9916 https://doi.org/10.7717/peerj.9916

Species occurrence records provide the basis for many biodiversity studies. They derive from georeferenced specimens deposited in natural history collections and visual observations, such as those obtained through various mobile applications. Given the rapid increase in availability of such data, th…

Chevalier, M., Chase, B. M., Quick, L. J., Dupont, L. M., & Johnson, T. C. (2020). Temperature change in subtropical southeastern Africa during the past 790,000 yr. Geology. doi:10.1130/g47841.1 https://doi.org/10.1130/G47841.1

Across the glacial-interglacial cycles of the late Pleistocene (~700 k.y.), temperature variability at low latitudes is often considered to have been negligible compared to changes in precipitation. However, a paucity of quantified temperature records makes this difficult to reliably assess. In this…

Tan, K., Lu, T., & Ren, M.-X. (2020). Biogeography and evolution of Asian Gesneriaceae based on updated taxonomy. PhytoKeys, 157, 7–26. doi:10.3897/phytokeys.157.34032 https://doi.org/10.3897/phytokeys.157.34032

Based on an updated taxonomy of Gesneriaceae, the biogeography and evolution of the Asian Gesneriaceae are outlined and discussed. Most of the Asian Gesneriaceae belongs to Didymocarpoideae, except Titanotrichum was recently moved into Gesnerioideae. Most basal taxa of the Asian Gesneriaceae are fou…

De Jesús Hernández-Hernández, M., Cruz, J. A., & Castañeda-Posadas, C. (2020). Paleoclimatic and vegetation reconstruction of the miocene southern Mexico using fossil flowers. Journal of South American Earth Sciences, 104, 102827. doi:10.1016/j.jsames.2020.102827 https://doi.org/10.1016/j.jsames.2020.102827

Concern about the course of the current environmental problems has raised interest in investigating the different scenarios that have taken place in our planet throughout time. To that end, different methodologies have been employed in order to determine the different variables that compose the envi…

Bellot, S., Bayton, R. P., Couvreur, T. L. P., Dodsworth, S., Eiserhardt, W. L., Guignard, M. S., … Baker, W. J. (2020). On the origin of giant seeds: the macroevolution of the double coconut ( Lodoicea maldivica ) and its relatives (Borasseae, Arecaceae). New Phytologist. doi:10.1111/nph.16750 https://doi.org/10.1111/nph.16750

Seed size shapes plant evolution and ecosystems, and may be driven by plant size and architecture, dispersers, habitat and insularity. How these factors influence the evolution of giant seeds is unclear, as are the rate of evolution and the biogeographical consequences of giant seeds. We generated D…

Holzmeyer, L., Hartig, A.-K., Franke, K., Brandt, W., Muellner-Riehl, A. N., Wessjohann, L. A., & Schnitzler, J. (2020). Evaluation of plant sources for antiinfective lead compound discovery by correlating phylogenetic, spatial, and bioactivity data. Proceedings of the National Academy of Sciences, 201915277. doi:10.1073/pnas.1915277117 https://doi.org/10.1073/pnas.1915277117

Antibiotic resistance and viral diseases are rising around the world and are becoming major threats to global health, food security, and development. One measure that has been suggested to mitigate this crisis is the development of new antibiotics. Here, we provide a comprehensive evaluation of the …

Goodwin, Z. A., Muñoz-Rodríguez, P., Harris, D. J., Wells, T., Wood, J. R. I., Filer, D., & Scotland, R. W. (2020). How long does it take to discover a species? Systematics and Biodiversity, 1–10. doi:10.1080/14772000.2020.1751339 https://doi.org/10.1080/14772000.2020.1751339

The description of a new species is a key step in cataloguing the World’s flora. However, this is only a preliminary stage in a long process of understanding what that species represents. We investigated how long the species discovery process takes by focusing on three key stages: 1, the collection …