Science Enabled by Specimen Data

Baumbach, L., Warren, D. L., Yousefpour, R., & Hanewinkel, M. (2021). Climate change may induce connectivity loss and mountaintop extinction in Central American forests. Communications Biology, 4(1). doi:10.1038/s42003-021-02359-9 https://doi.org/10.1038/s42003-021-02359-9

The tropical forests of Central America serve a pivotal role as biodiversity hotspots and provide ecosystem services securing human livelihood. However, climate change is expected to affect the species composition of forest ecosystems, lead to forest type transitions and trigger irrecoverable losses…

Deanna, R., Wilf, P., & Gandolfo, M. A. (2020). New physaloid fruit‐fossil species from early Eocene South America. American Journal of Botany, 107(12), 1749–1762. doi:10.1002/ajb2.1565 https://doi.org/10.1002/ajb2.1565

Premise: Solanaceae is a scientifically and economically important angiosperm family with a minimal fossil record and an intriguing early evolutionary history. Here, we report a newly discovered fossil lantern fruit with a suite of features characteristic of Physalideae within Solanaceae. The fossil…

Magri, D., Parra, I., Di Rita, F., Ni, J., Shichi, K., & Worth, J. R. P. (2020). Linking worldwide past and present conifer vulnerability. Quaternary Science Reviews, 250, 106640. doi:10.1016/j.quascirev.2020.106640 https://doi.org/10.1016/j.quascirev.2020.106640

Inventories of species recently extinct or threatened with extinction may be found in global databases. However, despite the large number of published fossil based-studies, specific databases on the vulnerability of species in the past are not available. We compiled a worldwide database of published…

Bazzicalupo, A. L., Whitton, J., & Berbee, M. L. (2019). Over the hills, but how far away? Estimates of mushroom geographic range extents. Journal of Biogeography. doi:10.1111/jbi.13617 https://doi.org/10.1111/jbi.13617

Aim: Geographic distributions of mushroom species remain poorly understood despite their importance for advancing our understanding of the habitat requirements, species interactions and ecosystem functions of this key group of organisms. Here, we estimate geographic range extents (maximum within‐spe…

De Jesús Hernández-Hernández, M., Cruz, J. A., & Castañeda-Posadas, C. (2020). Paleoclimatic and vegetation reconstruction of the miocene southern Mexico using fossil flowers. Journal of South American Earth Sciences, 104, 102827. doi:10.1016/j.jsames.2020.102827 https://doi.org/10.1016/j.jsames.2020.102827

Concern about the course of the current environmental problems has raised interest in investigating the different scenarios that have taken place in our planet throughout time. To that end, different methodologies have been employed in order to determine the different variables that compose the envi…

Holzmeyer, L., Hartig, A.-K., Franke, K., Brandt, W., Muellner-Riehl, A. N., Wessjohann, L. A., & Schnitzler, J. (2020). Evaluation of plant sources for antiinfective lead compound discovery by correlating phylogenetic, spatial, and bioactivity data. Proceedings of the National Academy of Sciences, 201915277. doi:10.1073/pnas.1915277117 https://doi.org/10.1073/pnas.1915277117

Antibiotic resistance and viral diseases are rising around the world and are becoming major threats to global health, food security, and development. One measure that has been suggested to mitigate this crisis is the development of new antibiotics. Here, we provide a comprehensive evaluation of the …

Li, M., He, J., Zhao, Z., Lyu, R., Yao, M., Cheng, J., & Xie, L. (2020). Predictive modelling of the distribution of Clematis sect. Fruticella s. str. under climate change reveals a range expansion during the Last Glacial Maximum. PeerJ, 8, e8729. doi:10.7717/peerj.8729 https://doi.org/10.7717/peerj.8729

Background The knowledge of distributional dynamics of living organisms is a prerequisite for protecting biodiversity and for the sustainable use of biotic resources. Clematis sect. Fruticella s. str. is a small group of shrubby, yellow-flowered species distributed mainly in arid and semi-arid areas…

Ringelberg, J. J., Zimmermann, N. E., Weeks, A., Lavin, M., & Hughes, C. E. (2020). Biomes as evolutionary arenas: Convergence and conservatism in the trans‐continental succulent biome. Global Ecology and Biogeography. doi:10.1111/geb.13089 https://doi.org/10.1111/geb.13089

Aim: Historically, biomes have been defined based on their structurally and functionally similar vegetation, but there is debate about whether these similarities are superficial, and about how biomes are defined and mapped. We propose that combined assessment of evolutionary convergence of plant fun…

Asase, A., Sainge, M. N., Radji, R. A., Ugbogu, O. A., & Peterson, A. T. (2020). A new model for efficient, need‐driven progress in generating primary biodiversity information resources. Applications in Plant Sciences, 8(1). doi:10.1002/aps3.11318 https://doi.org/10.1002/aps3.11318

Premise: The field of biodiversity informatics has developed rapidly in recent years, with broad availability of large‐scale information resources. However, online biodiversity information is biased spatially as a result of slow and uneven capture and digitization of existing data resources. The Wes…

Marconi, L., & Armengot, L. (2020). Complex agroforestry systems against biotic homogenization: The case of plants in the herbaceous stratum of cocoa production systems. Agriculture, Ecosystems & Environment, 287, 106664. doi:10.1016/j.agee.2019.106664 https://doi.org/10.1016/j.agee.2019.106664

In addition to their potential against deforestation and climate change, agroforestry systems may have a relevant role in biodiversity conservation. In this sense, not only species richness per se, but also community composition, including the distribution range of the species, should be considered.…