Science Enabled by Specimen Data

Li, X., Li, B., Wang, G., Zhan, X., & Holyoak, M. (2020). Deeply digging the interaction effect in multiple linear regressions using a fractional-power interaction term. MethodsX, 7, 101067. doi:10.1016/j.mex.2020.101067 https://doi.org/10.1016/j.mex.2020.101067

In multiple regression Y ~ β0 + β1X1 + β2X2 + β3X1 X2 + ɛ., the interaction term is quantified as the product of X1 and X2. We developed fractional-power interaction regression (FPIR), using βX1M X2N as the interaction term. The rationale of FPIR is that the slopes of Y-X1 regression along the X2 gr…

Rotenberry, J. T., & Balasubramaniam, P. (2020). Connecting species’ geographical distributions to environmental variables: range maps versus observed points of occurrence. Ecography. doi:10.1111/ecog.04871 https://doi.org/10.1111/ecog.04871

Connecting the geographical occurrence of a species with underlying environmental variables is fundamental for many analyses of life history evolution and for modeling species distributions for both basic and practical ends. However, raw distributional information comes principally in two forms: poi…

Prieto-Torres, D. A., Lira-Noriega, A., & Navarro-Sigüenza, A. G. (2020). Climate change promotes species loss and uneven modification of richness patterns in the avifauna associated to Neotropical seasonally dry forests. Perspectives in Ecology and Conservation. doi:10.1016/j.pecon.2020.01.002 https://doi.org/10.1016/j.pecon.2020.01.002

We assessed the effects of global climate change as a driver of spatio-temporal biodiversity patterns in bird assemblages associated to Neotropical seasonally dry forests (NSDF). For this, we estimated the geographic distribution of 719 bird species under current and future climate (2050 and 2070) p…

Ramoni‐Perazzi, P., Schuchmann, K., Weller, A., Soto‐Werschitz, I. A., & Passamani, M. (2020). Niches and radiations: a case study on the Andean sapphire‐vented puffleg Eriocnemis luciani and coppery‐naped puffleg E. sapphiropygia (Aves, Trochilidae). Journal of Avian Biology, 51(1). doi:10.1111/jav.02242 https://doi.org/10.1111/jav.02242

The interaction between ecology and evolution, particularly with regard to speciation processes, remains a main topic of scientific research. Andean hummingbirds have undergone a remarkable radiation, with many species exhibiting patchy distributions and, in some cases, taxonomic controversy. An exa…

Ritter, C. D., Faurby, S., Bennett, D. J., Naka, L. N., ter Steege, H., Zizka, A., … Antonelli, A. (2019). The pitfalls of biodiversity proxies: Differences in richness patterns of birds, trees and understudied diversity across Amazonia. Scientific Reports, 9(1). doi:10.1038/s41598-019-55490-3 https://doi.org/10.1038/s41598-019-55490-3

Most knowledge on biodiversity derives from the study of charismatic macro-organisms, such as birds and trees. However, the diversity of micro-organisms constitutes the majority of all life forms on Earth. Here, we ask if the patterns of richness inferred for macro-organisms are similar for micro-or…

Scharff, N., Coddington, J. A., Blackledge, T. A., Agnarsson, I., Framenau, V. W., Szűts, T., … Dimitrov, D. (2019). Phylogeny of the orb‐weaving spider family Araneidae (Araneae: Araneoidea). Cladistics. doi:10.1111/cla.12382 https://doi.org/10.1111/cla.12382

We present a new phylogeny of the spider family Araneidae based on five genes (28S, 18S, COI, H3 and 16S) for 158 taxa, identified and mainly sequenced by us. This includes 25 outgroups and 133 araneid ingroups representing the subfamilies Zygiellinae Simon, 1929, Nephilinae Simon, 1894, and the typ…

Piel, W. H. (2018). The global latitudinal diversity gradient pattern in spiders. Journal of Biogeography, 45(8), 1896–1904. doi:10.1111/jbi.13387 https://doi.org/10.1111/jbi.13387

Aim: The aim of this study was to test the hypothesis that the global latitudinal diversity gradient pattern in spiders is pear‐shaped, with maximum species diversity shifted south of the Equator, rather than egg‐shaped, centred on the equator, this study infers the gradient using two large datasets…

Antonelli, A., Zizka, A., Carvalho, F. A., Scharn, R., Bacon, C. D., Silvestro, D., & Condamine, F. L. (2018). Amazonia is the primary source of Neotropical biodiversity. Proceedings of the National Academy of Sciences, 115(23), 6034–6039. doi:10.1073/pnas.1713819115 https://doi.org/10.1073/pnas.1713819115

The American tropics (the Neotropics) are the most species-rich realm on Earth, and for centuries, scientists have attempted to understand the origins and evolution of their biodiversity. It is now clear that different regions and taxonomic groups have responded differently to geological and climati…