Science Enabled by Specimen Data
Wu, Y.-M., L.-L. Lu, B. Sun, D. K. Ferguson, J.-F. Li, S.-L. Zhou, Y.-F. Wang, and J. Yang. 2025. Recognizing Prunus persica (peach) and allied Rosaceae by the morphological characteristics of their fruitstones. Vegetation History and Archaeobotany. https://doi.org/10.1007/s00334-025-01043-w
Prunus persica (peach), a well-known fruit species belonging to the family Rosaceae, has a long history of human consumption. Its hard and easily preserved fruitstones (endocarps) have often been found at archaeological sites in many parts of the world. However, there are several species within Prunus subg. Prunus sect. Persica with similar stone morphologies. In order to correctly identify the stones of P. persica and related taxa, we first sampled, described and analysed the stone morphological characteristics of all five species in sect. Persica , together with the related taxa P . armeniaca , P . mume and P . salicina . Then detailed fruitstone descriptions and measurements were made together with an illustrated key to the various species, to enable the identification of peaches at species level and to explore and understand the processes of domestication, cultivation and distribution of P. persica and its allies.
Dahal, S., C. M. Siniscalchi, and R. A. Folk. 2025. A phylogenomic investigation into the biogeography of the Mexico–eastern U.S. disjunction in Symphyotrichum. American Journal of Botany 112. https://doi.org/10.1002/ajb2.70021
AbstractPremiseBiotic disjunctions have attracted scientific attention for the past 200 years. Despite being represented in many familiar plants (such as bald cypress, flowering dogwood, sweetgum, partridgeberry, etc.), the eastern North American (ENA)–Mexican (M) disjunction remains poorly understood. Major outstanding questions include the divergence times of taxa exhibiting the disjunction and environmental/geological processes that may underlie the disjunction. Symphyotrichum Nees (Asteraceae), one of the most diverse genera in the eastern USA, displays several examples of disjunct ENA–M taxa.MethodsWe generated target capture data using the Angiosperms353 baitset and generated the first well‐sampled phylogenomic hypothesis for Symphyotrichum and its close relatives. Focusing on S. subgenus Virgulus, we used MCMCTREE to perform divergence time estimation and the R package BioGeoBEARS to infer ancestral regions and biogeographic transitions between North America and Mexico. Finally, we used the ancestral niche reconstruction method Utremi to test for a role of historical aridification in generating the disjunction.ResultsOur molecular data suggest a recent radiation of Symphyotrichum at the Plio‐Pleistocene boundary (~2.5 mya), with early connections to Mexico in ancestral lineages that closed off shortly after and were followed by vicariance across this region. Except for some present‐day broadly distributed species, there is a complete lack of movement between ENA and M after ~0.5 mya.ConclusionsA reconstructed disjunct distribution of suitable habitat in Pleistocene climatic models corroborates results from biogeographic modeling and confirms glacial cycles are more likely to be associated with the breakup of ENA–M biogeographic connections.
Zhao, J., J.-G. Wang, Y.-P. Hu, C.-J. Huang, S.-L. Fang, Z.-Y. Wan, R.-J. Li, et al. 2025. Phylogenetic Inferences and Historical Biogeography of Onocleaceae. Plants 14: 510. https://doi.org/10.3390/plants14040510
The family Onocleaceae represents a small family of terrestrial ferns, with four genera and around five species. It has a circumboreal to north temperate distribution, and exhibits a disjunct distribution between Eurasia and North America, including Mexico. Historically, the taxonomy and classification of this family has been subject to debate and contention among scholars, leading to contradictory classifications and disagreements on the number of genera and species within the family. Furthermore, due to this disjunct intercontinental distribution and the lack of detailed study across its wide range, this family merits further study to clarify its distributional pattern. Maximum likelihood and Bayesian phylogenetic reconstructions were based on a concatenated sequence dataset for 17 plastid loci and one nuclear locus, which were generated from 106 ingroup and six outgroup taxa from three families. Phylogenetic analyses support that Onocleaceae is composed of four main clades, and Pentarhizidium was recovered as the first branching lineages in Onocleaceae. Molecular dating and ancestral area reconstruction analyses suggest that the stem group of Onocleaceae originated in Late Cretaceous, with subsequent diversification and establishment of the genera Matteuccia, Onoclea, Onocleopsis, and Pentarhizidium during the Paleogene and Neogene. The ancestors of Matteuccia, Onoclea, and Onocleopsis could have migrated to North America via the Beringian land bridge or North Atlantic land bridge which suggests that the diversification of Matteuccia + Onoclea + Onocleopsis closely aligns with the Paleocene-Eocene Thermal Maximum (PETM). In addition, these results suggest that Onocleaceae species diversity peaks during the late Neogene to Quaternary. Studies such as this enhance our understanding of the mechanisms and climatic conditions shaping disjunct distribution in ferns and lycophytes of eastern Asia, North America, and Mexico and contribute to a growing body of evidence from other taxa, to advance our understanding of the origins and migration of plants across continents.
Weiss, R. M., T. Haye, O. Olfert, S. Barkley, J. Gavloski, J. Tansey, J. Otani, and M. A. Vankosky. 2025. Bioclimatic analysis of cabbage seedpod weevil, Ceutorhyncus obstrictus (Marsham) (Coleoptera: Curculionidae) and canola, Brassica napus Linnaeus (Brassicaceae) responses to climate. Canadian Journal of Plant Science 105: 1–16. https://doi.org/10.1139/cjps-2024-0177
The cabbage seedpod weevil (CSW), Ceutorhynchus obstrictus (Marsham) (Coleoptera: Curculionidae) is an important pest of brassicaceous crops, including canola ( Brassica napus Linnaeus). CSW consumes seeds of its host from inside the developing pods. It was introduced to North America from Europe and now occurs throughout the United States of America and Canada. Climate is one of the most important factors that determines species distribution and abundance. CLIMEX is a bioclimate model development application. Based on climate inputs, bioclimatic simulation models are tools that predict the potential geographic distribution and abundance of insects and plants. This study updated a previous bioclimatic model for CSW and presents a new model for canola. Validated models were used to conduct bioclimatic analysis of both species, the results of which provide a better understanding of how climate affects spatial distribution and abundance of CSW and the distribution and yield of canola. Application of incremental temperature and moisture scenarios were used to predict the spatial relationship of CSW risk and canola yield. We anticipate that the canola model will be applied to future bioclimatic studies of pests and beneficial insects of canola. Both the CSW and canola model can be used in climate change studies using datasets for predicted future climates.
Roberts, J., and S. Florentine. 2025. Current and future management challenges for globally invasive grasses, with special reference to Echinochloa crus‐galli, Panicum capillare and Sorghum halepense. Weed Research 65. https://doi.org/10.1111/wre.70005
Without appropriate and ongoing management interventions, weeds will continue to economically and environmentally disadvantage agricultural and natural ecosystems. For these management strategies to have long‐term sustained success, they need to carefully consider the biological aspects of the targeted weed. These strategies will also need to consider potential adaptations evolved by the targeted weed in response to a range of selection pressures imposed by anthropogenetic factors, climate change, changing environmental conditions, and inappropriate or unsuccessful management regimes. One group of weeds that has been observed to readily adapt to a wide range of conditions and has shown considerable challenges in their management is invasive grasses. Adding to these challenges is that several invasive grasses have also developed resistance to a range of herbicide modes of action, which, to date, has been one of the most commonly used methods of control. To address these challenges, this review explores the biology and ecology of the globally invasive annuals Echinochloa crus‐galli (Barnyard grass) and Panicum capillare (Witchgrass), and the perennial Sorghum halepense (Johnson grass) to identify (i) the most suitable management options for their control and (ii) potential research gaps that may assist in the future management direction of these species. Based on the findings of this review, it is clear that an integrated management approach that targets different aspects of the plant's biology, in combination with early detection and treatment and ongoing surveillance, is necessary for the long‐term control of these species. Although a combination of methods appears promising, further investigation still is required to evaluate their efficiency and long‐term success in a changing environment, all of which are further discussed within this review.
Pan, Y., C. Fu, C. Tian, H. Zhang, X. Wang, and M. Li. 2025. Unraveling the Impact of Environmental Factors and Evolutionary History on Species Richness Patterns of the Genus Sorbus at Global Level. Plants 14: 338. https://doi.org/10.3390/plants14030338
Understanding the drivers of species richness patterns is a major goal of ecology and evolutionary biology, and the drivers vary across regions and taxa. Here, we assessed the influence of environmental factors and evolutionary history on the pattern of species richness in the genus Sorbus (110 species). We mapped the global species richness pattern of Sorbus at a spatial resolution of 200 × 200 km, using 10,652 specimen records. We used stepwise regression to assess the relationship between 23 environmental predictors and species richness and estimated the diversification rate of Sorbus based on chloroplast genome data. The effects of environmental factors were explained by adjusted R2, and evolutionary factors were inferred based on differences in diversification rates. We found that the species richness of Sorbus was highest in the Hengduan Mountains (HDM), which is probably the center of diversity. Among the selected environmental predictors, the integrated model including all environmental predictors had the largest explanatory power for species richness. The determinants of species richness show regional differences. On the global and continental scale, energy and water availability become the main driving factors. In contrast, climate seasonality is the primary factor in the HDM. The diversification rate results showed no significant differences between HDM and non-HDM, suggesting that evolutionary history may have limited impact on the pattern of Sorbus species richness. We conclude that environmental factors play an important role in shaping the global pattern of Sorbus species richness, while diversification rates have a lesser impact.
Song, J.-W., J. Seo, and W.-H. Lee. 2025. Spatial Evaluation of Salurnis marginella Occurrence According to Climate Change Using Multiple Species Distribution Models. Agriculture 15: 297. https://doi.org/10.3390/agriculture15030297
Salurnis marginella causes agricultural and forest damage in various Asian environments. However, considering the environmental adaptability of pests and the active international trade, it may invade other regions in the future. As the damage to local communities caused by pests becomes difficult to control after invasion, it is essential to establish measures to minimize losses through pre-emptive monitoring and identification of high-risk areas, which can be achieved through model-based predictions. The aim of this study was to evaluate the potential distribution of S. marginella by developing multiple species distribution modeling (SDM) algorithms. Specifically, we developed the CLIMEX model and three machine learning-based models (MaxEnt, random forest, and multi-layer perceptron), integrated them to conservatively assess pest occurrence under current and future climates, and overlaid the host distribution with climatically suitable areas of S. marginella to identify high-risk areas vulnerable to the spread and invasion of the pest. The developed model, demonstrating a true skill statistic >0.8, predicted the potential continuous distribution of the species across the southeastern United States, South America, and Central Africa. This distribution currently covers approximately 9.53% of the global land area; however, the model predicted this distribution would decrease to 6.85%. Possible areas of spread were identified in Asia and the southwestern United States, considering the host distribution. This study provides data for the proactive monitoring of pests by identifying areas where S. marginella can spread.
Olivares-Pinto, U., J. C. S. Lopes, C. Ruiz-Aguilar, Y. Oki, and G. W. Fernandes. 2025. Adapting to a shifting planet: The future of Drosera species amidst global challenges and conservation imperatives. Anthropocene 49: 100466. https://doi.org/10.1016/j.ancene.2025.100466
This study assesses the potential effects of climate change on the distribution of the Drosera genus, which is a carnivorous plant group widely distributed in South America. The Drosera species act as adequate biological indicators, with their fitness performance reflecting the health of ecosystems. Through the application of species distribution models and the analysis of bioclimatic variables, the adaptability of 39 Drosera species to evolving climatic conditions was assessed, revealing their capacity to thrive in diverse habitats, from nutrient-deficient soils to regions with high atmospheric CO2 concentrations. While many species show adaptability, environmental forecasts using two General Circulation Models indicate a decrease in favorable habitats by 2050 and 2070. It is expected that about 71.79 % of species will encounter shrinking habitat suitability, while 28.21 % may see an increase in habitat suitability. This anticipated habitat loss underscores the critical need for proactive conservation measures, including habitat preservation, ecological restoration, assisted migration, and genetic conservation efforts, to counteract the adverse effects of climate change. Additionally, the study highlights the importance of refining species distribution models and deepening our understanding of the ecological dynamics of Drosera species in response to environmental changes. By offering insights into the challenges and opportunities for conserving Drosera species in a changing climate, this work lays a solid groundwork for future ecological research and conservation initiatives. It calls for an integrated approach that combines scientific inquiry with strategic conservation actions to ensure the survival of these unique plant group and ecological integrity during global environmental shifts.
Pan, Y., Y. Guan, S. Lv, X. Huang, Y. Lin, C. Wei, and D. Xu. 2025. Assessing the Potential Distribution of Lonicera japonica in China Under Climate Change: A Biomod2 Ensemble Model-Based Study. Agriculture 15: 393. https://doi.org/10.3390/agriculture15040393
Lonicera japonica, an importante rsource plant, possesses significant medicinal, economic, and ecological value. To understand its response to climate change and to optimize its conservation and utilization, this study employed the Biomod2 ensemble model to predict its potential distribution under future climate scenarios and identified key environmental factors influencing its distribution. The results showed that under current climatic conditions, the potential distribution of honeysuckle is primarily concentrated in low-altitude regions of central and eastern China and the Sichuan Basin. In future scenarios, the overall distribution pattern changes less, and the area of highly suitable habitats slightly decreases by 0.80%. Distribution analysis indicated a trend of northward migration towards higher latitudes. Temperature-related factors, including temperature seasonality, the minimum temperature of the coldest month, the mean temperature of the coldest quarter, and the annual mean temperature, were identified as dominant factors affecting its distribution. The Biomod2 ensemble model significantly improved the precision and accuracy of suitability predictions compared to single models, providing a scientific basis for predicting the future geographic distribution of honeysuckle and for establishing and utilizing its cultivation regions in China.
Lombardi, E. M., H. Faust, and H. E. Marx. 2024. Synthesizing historical plant collections to identify priorities for future collection efforts and research applications. Ecosphere 15. https://doi.org/10.1002/ecs2.70102
To understand how and where biodiversity is threatened, it is imperative to build historical baselines that accurately characterize the present and past states of biodiversity across environments. Botanical collections provide important ecological, evolutionary, and biogeographic information on the diversity and distributions of plant taxa, yet biases in collection efforts across spatial, temporal, and taxonomic scales are well known. Here, we characterize and quantify trends in botanical collections made from across different abiotic, biotic, and sociopolitical boundaries within the present‐day state of New Mexico. Using a biodiversity informatics approach applied toward a regional case study, we identify opportunities for efficiently improving natural history collection coverage and analyses of botanical diversity. Accurate representation of botanical biodiversity, preserved for future generations through vouchered plant specimens deposited in herbaria, depends on collection decisions made now. This work aims to provide a useful workflow for synthesizing digitized regional botanical collections as researchers prioritize current and future resources in the face of global change.