Science Enabled by Specimen Data

Scherrer, D., Esperon‐Rodriguez, M., Beaumont, L. J., Barradas, V. L., & Guisan, A. (2021). National assessments of species vulnerability to climate change strongly depend on selected data sources. Diversity and Distributions. doi:10.1111/ddi.13275 https://doi.org/10.1111/ddi.13275

Aim: Correlative species distribution models (SDMs) are among the most frequently used tools for conservation planning under climate and land use changes. Conservation-focused climate change studies are often conducted on a national or local level and can use different sources of occurrence records …

Klisz, M., Puchałka, R., Netsvetov, M., Prokopuk, Y., Vítková, M., Sádlo, J., … Koprowski, M. (2021). Variability in climate-growth reaction of Robinia pseudoacacia in Eastern Europe indicates potential for acclimatisation to future climate. Forest Ecology and Management, 492, 119194. doi:10.1016/j.foreco.2021.119194 https://doi.org/10.1016/j.foreco.2021.119194

As a consequence of native tree species decline and distribution range contraction in Europe, acclimation of the non-native tree species at the edge of their distribution is gaining importance. Although non-native tree species may provide sustainable ecosystem services, as a potentially invasive spe…

Mazijk, R., Cramer, M. D., & Verboom, G. A. (2021). Environmental heterogeneity explains contrasting plant species richness between the South African Cape and southwestern Australia. Journal of Biogeography. doi:10.1111/jbi.14118 https://doi.org/10.1111/jbi.14118

Aim: Given the importance of environmental heterogeneity as a driver of species richness through its effects on species diversification and coexistence, we asked whether the dramatic difference in species richness per unit area between two similar Mediterranean‐type biodiversity hotspots is explaine…

Rock, B. M., & Daru, B. H. (2021). Impediments to Understanding Seagrasses’ Response to Global Change. Frontiers in Marine Science, 8. doi:10.3389/fmars.2021.608867 https://doi.org/10.3389/fmars.2021.608867

Uncertainties from sampling biases present challenges to ecologists and evolutionary biologists in understanding species sensitivity to anthropogenic climate change. Here, we synthesize possible impediments that can constrain research to assess present and future seagrass response from climate chang…

Briscoe Runquist, R. D., Lake, T. A., & Moeller, D. A. (2021). Improving predictions of range expansion for invasive species using joint species distribution models and surrogate co‐occurring species. Journal of Biogeography. doi:10.1111/jbi.14105 https://doi.org/10.1111/jbi.14105

Aims: Species distribution models (SDMs) are often used to forecast potential distributions of important invasive or rare species. However, situations where models could be the most valuable ecologically or economically, such as for predicting invasion risk, often pose the greatest challenges to SDM…

Saldaña‐López, A., Vilà, M., Lloret, F., Manuel Herrera, J., & González‐Moreno, P. (2021). Assembly of species’ climatic niches of coastal communities does not shift after invasion. Journal of Vegetation Science, 32(2). doi:10.1111/jvs.12989 https://doi.org/10.1111/jvs.12989

Question: Do invasions by invasive plant species with contrasting trait profiles (Arctotheca calendula, Carpobrotus spp., Conyza bonariensis, and Opuntia dillenii) change the climatic niche of coastal plant communities? Location: Atlantic coastal habitats in Huelva (Spain). Methods: We identifi…

Follak, S., Bakacsy, L., Essl, F., Hochfellner, L., Lapin, K., Schwarz, M., … Wołkowycki, D. (2021). Monograph of invasive plants in Europe N°6: Asclepias syriaca L. Botany Letters, 1–30. doi:10.1080/23818107.2021.1886984 https://doi.org/10.1080/23818107.2021.1886984

This work synthesizes all aspects of Asclepias syriaca L. (Apocynaceae) including the taxonomy, distribution, history of introduction and spread, ecology, biology, uses and benefits, impacts on biodiversity and agriculture, legislation, and management. Asclepias syriaca is a perennial broad-leaved s…

Géron, C., Lembrechts, J. J., Borgelt, J., Lenoir, J., Hamdi, R., Mahy, G., … Monty, A. (2021). Urban alien plants in temperate oceanic regions of Europe originate from warmer native ranges. Biological Invasions. doi:10.1007/s10530-021-02469-9 https://doi.org/10.1007/s10530-021-02469-9

When colonizing new areas, alien plant species success can depend strongly on local environmental conditions. Microclimatic barriers might be the reason why some alien plant species thrive in urban areas, while others prefer rural environments. We tested the hypothesis that the climate in the native…

Puchałka, R., Dyderski, M. K., Vítková, M., Sádlo, J., Klisz, M., Netsvetov, M., … Jagodziński, A. M. (2020). Black locust ( Robinia pseudoacacia L.) range contraction and expansion in Europe under changing climate. Global Change Biology. doi:10.1111/gcb.15486 https://doi.org/10.1111/gcb.15486

Robinia pseudoacacia is one of the most frequent non‐native species in Europe. It is a fast‐growing tree of high economic and cultural importance. On the other hand, it is an invasive species, causing changes in soil chemistry and light regime, and consequently altering the plant communities. Previo…

Shaw, E. C., Fowler, R., Ohadi, S., Bayly, M. J., Barrett, R. A., Tibbits, J., … Cousens, R. D. (2020). Explaining the worldwide distributions of two highly mobile species: Cakile edentula and Cakile maritima. Journal of Biogeography. doi:10.1111/jbi.14024 https://doi.org/10.1111/jbi.14024

Aim: If we are able to determine the geographic origin of an invasion, as well as its known area of introduction, we can better appreciate the innate environmental tolerance of a species and the strength of selection for adaptation that colonizing populations have undergone. It also enables us to ma…