Science Enabled by Specimen Data

De La Pascua, D. R., C. Smith‐Winterscheidt, J. A. Dowell, E. W. Goolsby, and C. M. Mason. 2020. Evolutionary trade‐offs in the chemical defense of floral and fruit tissues across genus Cornus. American Journal of Botany 107: 1260–1273. https://doi.org/10.1002/ajb2.1540

Premise: Defense investment in plant reproductive structures is relatively understudied compared to the defense of vegetative organs. Here the evolution of chemical defenses in reproductive structures is examined in light of the optimal defense, apparency, and resource availability hypotheses within…

Marciniuk, P., J. Marciniuk, A. Łysko, Ł. Krajewski, J. Chudecka, J. Skrzyczyńska, and A. A. Popiela. 2020. Rediscovery of Cyperus flavescens (Cyperaceae) on the northeast periphery of its range in Europe. PeerJ 8: e9837. https://doi.org/10.7717/peerj.9837

In recent years, three large populations of Cyperus flavescens were found in Poland, the richest occurrence of this species in over 30 years. The goal of this research is to determine the habitat factors lead to the mass occurrence of C. flavescens and the present situation of that species and its h…

Lindelof, K., J. A. Lindo, W. Zhou, X. Ji, and Q. (Jenny) Xiang. 2020. Phylogenomics, biogeography, and evolution of the blue‐ or white‐fruited dogwoods (Cornus)—Insights into morphological and ecological niche divergence following intercontinental geographic isolation. Journal of Systematics and Evolution 58: 604–645. https://doi.org/10.1111/jse.12676

The eastern Asian (EA)–eastern North American (ENA) floristic disjunction represents a major pattern of phytogeography of the Northern Hemisphere. Despite 20 years of studies dedicated to identification of taxa that display this disjunct pattern, its origin and evolution remain an open question, esp…

O’Connell, E., and J. Savage. 2020. Extended leaf phenology has limited benefits for invasive species growing at northern latitudes. Biological Invasions 22: 2957–2974. https://doi.org/10.1007/s10530-020-02301-w

Many understory woody invasive plants in North America leaf out earlier or retain leaves later than their native associates. This extended leaf phenology is thought to grant invasive species an advantage over native species because spring and fall are crucial times for light access and carbon acquis…

van Treuren, R., R. Hoekstra, R. Wehrens, and T. van Hintum. 2020. Effects of climate change on the distribution of crop wild relatives in the Netherlands in relation to conservation status and ecotope variation. Global Ecology and Conservation 23: e01054. https://doi.org/10.1016/j.gecco.2020.e01054

Crop wild relatives (CWR) are wild plant taxa that are genetically related to a cultivated species and are considered rich sources of useful traits for crop improvement. CWR are generally underrepresented in genebanks, while their survival in nature is not guaranteed. Inventories and risk analyses a…

Grünig, M., D. Mazzi, P. Calanca, D. N. Karger, and L. Pellissier. 2020. Crop and forest pest metawebs shift towards increased linkage and suitability overlap under climate change. Communications Biology 3. https://doi.org/10.1038/s42003-020-0962-9

Global changes pose both risks and opportunities to agriculture and forestry, and biological forecasts can inform future management strategies. Here, we investigate potential land-use opportunities arising from climate change for these sectors in Europe, and risks associated with the introduction an…

Goodwin, Z. A., P. Muñoz-Rodríguez, D. J. Harris, T. Wells, J. R. I. Wood, D. Filer, and R. W. Scotland. 2020. How long does it take to discover a species? Systematics and Biodiversity 18: 784–793. https://doi.org/10.1080/14772000.2020.1751339

The description of a new species is a key step in cataloguing the World’s flora. However, this is only a preliminary stage in a long process of understanding what that species represents. We investigated how long the species discovery process takes by focusing on three key stages: 1, the collection …

Xue, L., L. Jia, G. Nam, Y. Huang, S. Zhang, Y. Wang, Z. Zhou, and Y. Chen. 2020. Involucre fossils of Carpinus, a northern temperate element, from the Miocene of China and the evolution of its species diversity in East Asia. Plant Diversity 42: 155–167. https://doi.org/10.1016/j.pld.2020.01.001

East Asia has long been recognized as a major center for temperate woody plants diversity. Although several theories have been proposed to explain how the diversity of these temperate elements accumulated in the region, the specific process remains unclear. Here we describe six species of Carpinus, …

Li, M., J. He, Z. Zhao, R. Lyu, M. Yao, J. Cheng, and L. Xie. 2020. Predictive modelling of the distribution of Clematis sect. Fruticella s. str. under climate change reveals a range expansion during the Last Glacial Maximum. PeerJ 8: e8729. https://doi.org/10.7717/peerj.8729

Background The knowledge of distributional dynamics of living organisms is a prerequisite for protecting biodiversity and for the sustainable use of biotic resources. Clematis sect. Fruticella s. str. is a small group of shrubby, yellow-flowered species distributed mainly in arid and semi-arid areas…

Ringelberg, J. J., N. E. Zimmermann, A. Weeks, M. Lavin, and C. E. Hughes. 2020. Biomes as evolutionary arenas: Convergence and conservatism in the trans‐continental succulent biome A. Moles [ed.],. Global Ecology and Biogeography 29: 1100–1113. https://doi.org/10.1111/geb.13089

Aim: Historically, biomes have been defined based on their structurally and functionally similar vegetation, but there is debate about whether these similarities are superficial, and about how biomes are defined and mapped. We propose that combined assessment of evolutionary convergence of plant fun…