Science Enabled by Specimen Data
Olivares-Pinto, U., J. C. S. Lopes, C. Ruiz-Aguilar, Y. Oki, and G. W. Fernandes. 2025. Adapting to a shifting planet: The future of Drosera species amidst global challenges and conservation imperatives. Anthropocene 49: 100466. https://doi.org/10.1016/j.ancene.2025.100466
This study assesses the potential effects of climate change on the distribution of the Drosera genus, which is a carnivorous plant group widely distributed in South America. The Drosera species act as adequate biological indicators, with their fitness performance reflecting the health of ecosystems. Through the application of species distribution models and the analysis of bioclimatic variables, the adaptability of 39 Drosera species to evolving climatic conditions was assessed, revealing their capacity to thrive in diverse habitats, from nutrient-deficient soils to regions with high atmospheric CO2 concentrations. While many species show adaptability, environmental forecasts using two General Circulation Models indicate a decrease in favorable habitats by 2050 and 2070. It is expected that about 71.79 % of species will encounter shrinking habitat suitability, while 28.21 % may see an increase in habitat suitability. This anticipated habitat loss underscores the critical need for proactive conservation measures, including habitat preservation, ecological restoration, assisted migration, and genetic conservation efforts, to counteract the adverse effects of climate change. Additionally, the study highlights the importance of refining species distribution models and deepening our understanding of the ecological dynamics of Drosera species in response to environmental changes. By offering insights into the challenges and opportunities for conserving Drosera species in a changing climate, this work lays a solid groundwork for future ecological research and conservation initiatives. It calls for an integrated approach that combines scientific inquiry with strategic conservation actions to ensure the survival of these unique plant group and ecological integrity during global environmental shifts.
Buck, W. R., and B. Goffinet. 2024. A new checklist of the mosses of the continental United States and Canada1. The Bryologist 127. https://doi.org/10.1639/0007-2745-127.4.484
The checklist includes a listing of the genera and species of North American Bryophyta thought to occur in the continental United States and Canada. The floras of Mexico, Hawaii and Greenland are not included. The current list recognizes 1565 species, 12 subspecies, 34 varieties and one form (for a total of 1612 taxa) in 366 genera and 100 families. As a preface to the list, a systematic arrangement of the families and included genera for North America is presented. Many changes from the previous checklist are documented via footnotes that provide references to where changes were made. Only synonymy since the previous checklist is included. Twenty nomenclatural changes are made. These include 19 new combinations: Bryum brassicoides (≡ Gemmabryum brassicoides), B. pacificum (≡ Ptychostomum pacificum), B. torenii (≡ Imbribryum torenii), B. vinosum (≡ Gemmabryum vinosum), Chionoloma maragniphyllum (≡ Oxystegus maragniphyllus), Lescuraea tribulosa (≡ Pseudoleskea tribulosa), Pterygoneurum 3kieneri (≡ P. subsessile var. kieneri Habeeb), Pylaisiadelpha canadensis (≡ Brotherella canadensis), Streblotrichum convolutum var. eustegium (≡ Barbula eustegia), Streblotrichum convolutum var. gallinula (≡ Barbula convoluta var. gallinula), Voitia angustata (≡ Splachnum angustatum), V. mnioides (≡ Splachnum mnioides), V. pallida (≡ Tetraplodon pallidus), V. paradoxa (≡ Splachnum paradoxum), V. urceolata (≡ Splachnum urceolatum), Warnstorfia badia (≡ Hypnum badium), W. straminea (≡ Hypnum stramineum), W. straminea var. patens (Lindb.) (≡ Amblystegium stramineum var. patens), W. wickesiae (≡ Calliergon wickesiae). A new order is also introduced: Rhizogemmales W.R.Buck & Goffinet (≡ Rhizogemmaceae Bonfim Santos, Siebel & Fedosov).
Kassout, J., S. Chakkour, A. El Ouahrani, Y. Hmimsa, S. El Fatehi, Y. Yang, R. Hadria, and M. Ater. 2024. Potential geographical distribution of Carob tree (Ceratonia siliqua L., Leguminosae) in Morocco under climate change. African and Mediterranean Agricultural Journal - Al Awamia. https://doi.org/10.34874/imist.prsm/afrimed-i145.48246
Climate change is expected to have a profound impact on the growth and distribution of plant species, particularly in Mediterranean regions. In this study, we investigate the suitable habitat and geographical distribution of Ceratonia siliqua L. (Leguminosae), an exceptional Mediterranean tree, in Morocco. Our hypothesis suggests a reduction in suitable habitats for the carob tree under climate change scenarios. To test this, we used the maximum entropy algorithm (Maxent), 303 occurrence points and 19 bioclimatic variables to generate current and future models. We considered two representative concentration pathways (RCP4.5 and RCP8.5) as future input scenarios for the years 2050 and 2070. The maximum entropy model yielded satisfactory results, with a high Area Under Curve value of 0.987 (±0.001). Jackknife tests revealed that precipitation, followed by temperature, significantly influence the biogeographical dynamics of the carob tree in Morocco. Thus, our findings confirm the projected reduction in suitable habitat area by 2050 and 2070 under climate change scenarios. The approaches developed in this study are promising for predicting the potential distribution of native Mediterranean species and can serve as an effective tool to support conservation and restoration programs.
OLARIAGA, I., R. MÁRQUEZ-SANZ, S. P. GORJÓN, J. C. ZAMORA, and I. SALCEDO. 2024. Hymenochaete ametzii sp. nov. (Hymenochaetales, Basidiomycota), an endangered bark-dwelling species inhabiting old Quercus pyrenaica trees from the Iberian Peninsula. Phytotaxa 669: 194–210. https://doi.org/10.11646/phytotaxa.669.3.2
Bark-dwelling fungi represent a group of ecologically highly specialized organisms. This study deals with an undescribed species of Hymenochaete characterized by specifically inhabiting the bark of Pyrenean oak (Quercus pyrenaica), and producing effuse-reflexed basidiomata and mainly globose to subglobose basidiospores. Maximum Likelihood and Bayesian analyses of the nuclear ITS-LSU regions revealed that the sequences of H. ametzii form a monophyletic group with a low intraspecific variation and substantially different from closest taxa, further supporting its recognition as a species. The seven localities H. ametzii is known from are old forests with a long ecological continuity, containing large old Q. pyrenaica trees, and are located in the supramediterranean belt of the Mediterranean biogeographical region. Based on habitat availability and field counts of colonized trees, the global population of H. ametzii is estimated at 8,670 mature individuals. Considering that the traditional use of old Q. pyrenaica stands ceased several decades ago in the Iberian Peninsula, with a consequent decline in habitat quality and availability, it is concluded that H. ametzii is Endangered (EN) according to the IUCN criteria. Bark-dwelling fungi represent a group of ecologically highly specialized organisms. This study deals with an undescribed species of Hymenochaete characterized by specifically inhabiting the bark of Pyrenean oak (Quercus pyrenaica), and producing effuse-reflexed basidiomata and mainly globose to subglobose basidiospores. Maximum Likelihood and Bayesian analyses of the nuclear ITS-LSU regions revealed that the sequences of H. ametzii form a monophyletic group with a low intraspecific variation and substantially different from closest taxa, further supporting its recognition as a species. The seven localities H. ametzii is known from are old forests with a long ecological continuity, containing large old Q. pyrenaica trees, and are located in the supramediterranean belt of the Mediterranean biogeographical region. Based on habitat availability and field counts of colonized trees, the global population of H. ametzii is estimated at 8,670 mature individuals. Considering that the traditional use of old Q. pyrenaica stands ceased several decades ago in the Iberian Peninsula, with a consequent decline in habitat quality and availability, it is concluded that H. ametzii is Endangered (EN) according to the IUCN criteria.
Ramos-Muñoz, M., M. C. Castellanos, M. Blanco-Sánchez, B. Pías, J. A. Ramírez-Valiente, R. Benavides, A. Escudero, and S. Matesanz. 2024. Drivers of phenotypic variation and plasticity to drought in populations of a Mediterranean shrub along an environmental gradient. Environmental and Experimental Botany 228: 106011. https://doi.org/10.1016/j.envexpbot.2024.106011
Assessing the factors driving intraspecific phenotypic variation is crucial to understand the evolutionary trajectories of plant populations and predict their vulnerability to climate change. Environmental gradients often lead to phenotypic divergence in functional traits and their plasticity across populations. We studied the entire environmental range of the Mediterranean gypsum endemic shrub Helianthemum squamatum to evaluate the factors underlying quantitative population differentiation and phenotypic plasticity to drought, using a common garden with 16 populations that covered the main geographic and the entire climatic range of the species. Sampling followed a hierarchical approach to assess trait genetic variation within and among four distinct geographical regions. We found high but similar plastic responses across populations, which were consistent with adaptive plasticity to drought, including advanced phenology, more sclerophyllous leaves, higher water use efficiency and larger seeds in dry conditions. Despite these generally similar plastic responses, we found significant population differentiation in quantitative traits, part of which was structured at the regional scale. Such differentiation was not associated with environmental variation, including differences in climate and soil conditions. This suggests that non-adaptive processes might have had a role on genetic differentiation in H. squamatum, likely due to the island-like configuration of gypsum habitats and the lack of effective seed dispersal of the study species. Our results emphasize the role of phenotypic plasticity in adaptive drought response and the importance of considering both adaptive and non-adaptive processes shaping intraspecific phenotypic variation, which is crucial for predicting plant population vulnerability to climate change.
Aagesen, L., D. L. Salariato, M. A. Scataglini, J. M. Acosta, S. S. Denham, and C. Delfini. 2024. Spatial phylogenetics of grasses in the Southern Cone provides insights into ecology and evolution of the family in South America. Journal of Systematics and Evolution 62: 1177–1192. https://doi.org/10.1111/jse.13067
In this study, we explored the distributions of grass genera in the Southern Cone (SC) of South America, applying several phylogenetic diversity (PD) metrics and randomization tests. Grasses appear to have been present in South America since their early evolution as tropical understory species more than 60 Ma. During the course of evolution, grasses have adapted to all terrestrial biomes and become one of the most successful plant families on earth. At present, the SC contains nearly all terrestrial biomes and a wide range of humid to arid ecoregions. Analyzing 126.514 point occurrences and four plastid markers for 148 genera (91% of the native grass genera), we found that tropical humid regions hold the highest PD, with no observed bias in branch lengths. These results indicate that niche conservatism dominates the diversity pattern of grasses in the SC. We found significantly low PD in the Dry Chaco and in the Patagonian Steppe, which suggest ecological filtering in both warm and cold arid regions. The Patagonian Steppe also holds significantly longer branches than expected by chance, as the native grass flora is mainly composed of distantly related Pooideae genera with a northern hemisphere origin. Short branches are found in the Uruguayan Savanna, suggesting that these grasslands could be a cradle for grass diversity within the SC. The dated phylogeny supported the current view of a relatively recent evolution of the family within the SC, with most diversification taking place from the middle Miocene and onwards.
Diehl, N., P. Laeseke, I. Bartsch, M. Bligh, H. Buck‐Wiese, J. Hehemann, S. Niedzwiedz, et al. 2024. Photoperiod and temperature interactions drive the latitudinal distribution of Laminaria hyperborea (Laminariales, Phaeophyceae) under climate change. Journal of Phycology 60: 1237–1255. https://doi.org/10.1111/jpy.13497
Due to global rises in temperature, recent studies predict marine species shifting toward higher latitudes. We investigated the impact of interacting abiotic drivers on the distribution potential of the temperate kelp Laminaria hyperborea. The ecosystem engineering species is widespread along European coasts but has not yet been observed in the High Arctic, although it can survive several months of low temperatures and darkness. To investigate its ability to extend northward in future, we conducted a long‐term multifactorial experiment with sporophytes from Porsangerfjorden, Norway—close to the species' documented northernmost distribution margin. The samples were exposed to three different photoperiods (PolarDay, LongDay, and PolarNight) at 0°C, 5°C, and 10°C for 3 months. Optimum quantum yield of photosynthesis (Fv/Fm), dry weight, pigments, phlorotannins, and storage carbohydrates were monitored. Both physiological and biochemical parameters revealed that L. hyperborea was strongly influenced by the different photoperiods and their interaction with temperature, while temperature alone exerted only minor effects. The Fv/Fm data were integrated into a species distribution model to project a possible northward expansion of L. hyperborea. The combination of extended day lengths and low temperatures appeared to be the limiting reason for northward spread of L. hyperborea until recently. However, with water temperatures reaching 10°C in summer, this kelp will be able to thrive also in the High Arctic. Moreover, no evidence of stress to Arctic winter warming was observed. Consequently, L. hyperborea has a high potential for spreading northward with further warming which may significantly affect the structure and function of Arctic ecosystems.
Saunders, T. C., I. Larridon, W. J. Baker, R. L. Barrett, F. Forest, E. Françoso, O. Maurin, et al. 2024. Tangled webs and spider‐flowers: Phylogenomics, biogeography, and seed morphology inform the evolutionary history of Cleomaceae. American Journal of Botany 111. https://doi.org/10.1002/ajb2.16399
Premise Cleomaceae is an important model clade for studies of evolutionary processes including genome evolution, floral form diversification, and photosynthetic pathway evolution. Diversification and divergence patterns in Cleomaceae remain tangled as research has been restricted by its worldwide distribution, limited genetic sampling and species coverage, and a lack of definitive fossil calibration points.MethodsWe used target sequence capture and the Angiosperms353 probe set to perform a phylogenetic study of Cleomaceae. We estimated divergence times and biogeographic analyses to explore the origin and diversification of the family. Seed morphology across extant taxa was documented with multifocal image‐stacking techniques and morphological characters were extracted, analyzed, and compared to fossil records.ResultsWe recovered a well‐supported and resolved phylogenetic tree of Cleomaceae generic relationships that includes 236 (~86%) species. We identified 11 principal clades and confidently placed Cleomella as sister to the rest of the family. Our analyses suggested that Cleomaceae and Brassicaceae diverged ~56 mya, and Cleomaceae began to diversify ~53 mya in the Palearctic and Africa. Multiple transatlantic disjunct distributions were identified. Seeds were imaged from 218 (~80%) species in the family and compared to all known fossil species.ConclusionsOur results represent the most comprehensive phylogenetic study of Cleomaceae to date. We identified transatlantic disjunctions and proposed explanations for these patterns, most likely either long‐distance dispersals or contractions in latitudinal distributions caused by climate change over geological timescales. We found that seed morphology varied considerably but mostly mirrored generic relationships.
Marchuk, E. A., A. K. Kvitchenko, L. A. Kameneva, A. A. Yuferova, and D. E. Kislov. 2024. East Asian forest-steppe outpost in the Khanka Lowland (Russia) and its conservation. Journal of Plant Research 137: 997–1018. https://doi.org/10.1007/s10265-024-01570-z
The Khanka Lowland forest-steppe is the most eastern outpost of the Eurasian steppe biome. It includes unique grassland plant communities with rare steppe species. These coenosis have changed under the influence of anthropogenic activity, especially during the last 100 years and included both typical steppe species and nemoral mesophytic species. To distinguish these ecological groups of plants the random forest method with three datasets of environmental variables was applied. Specifically, a model of classification with the most important bioindices to predict a mesophytic ecological group of plants with a sensitivity greater than 80% was constructed. The data demonstrated the presence of steppe species that arrived at different times in the Primorye Territory. Most of these species are associated with the Mongolian-Daurian relict steppe complex and habit in the Khanka Lowland. Other species occur only in mountains in Primorye Territory and do not persist in the Khanka Lowland. These findings emphasize the presence of relict steppe communities with a complex of true steppe species in the Khanka Lowland. Steppe communities exhibit features of anthropogenic influence definitely through the long land use period but are not anthropogenic in origin. The most steppe species are located at the eastern border of distribution in the Khanka Lowlands and are valuable in terms of conservation and sources of information about steppe species origin and the emergence of the steppe biome as a whole.
H. S. Min, H. Shinwoo, and K. K. Soo. 2024. Ensemble Projection of Climate Suitability for Alfalfa (Medicago Sativa L.) in Hamkyongbukdo. Journal of The Korean Society of Grassland and Forage Science 44: 71–82. https://doi.org/10.5333/kgfs.2024.44.2.71
It would be advantageous to grow legume forage crops in order to increase the productivity and sustainability of sloped croplands in Hamkyongbukdo. In particular, the identification of potential cultivation areas for alfalfa in the given region could aid decision-making on policies and management related to forage crop production in the future. This study aimed to analyze the climate suitability of alfalfa in Hamkyongbukdo under current and future climate conditions using the Fuzzy Union model. The climate suitability predicted by the Fuzzy Union model was compared with the actual alfalfa cultivation area in the northern United States. Climate data obtained from 11 global climate models were used as input data for calculation of climate suitability in the study region to examine the uncertainty of projections under future climate conditions. The area where the climate suitability index was greater than a threshold value (22.6) explained about 44% of the variation in actual alfalfa cultivation areas by state in the northern United States. The climatic suitability of alfalfa was projected to decrease in most areas of Hamkyongbukdo under future climate scenarios. The climatic suitability in Onseong and Gyeongwon County was analyzed to be over 88 in the current climate conditions. However, it was projected to decrease by about 66% in the given areas by the 2090s. Our study illustrated that the impact of climate change on suitable cultivation areas was highly variable when different climate data were used as inputs to the Fuzzy Union model. Still, the ensemble of the climate suitability projections for alfalfa was projected to decrease considerably due to summer depression in Hamkyongbukdo. It would be advantageous to predict suitable cultivation areas by adding soil conditions or to predict the climate suitability of other leguminous crops such as hairy vetch, which merits further studies.