Science Enabled by Specimen Data
Dahal, S., C. M. Siniscalchi, and R. A. Folk. 2025. A phylogenomic investigation into the biogeography of the Mexico–eastern U.S. disjunction in Symphyotrichum. American Journal of Botany 112. https://doi.org/10.1002/ajb2.70021
AbstractPremiseBiotic disjunctions have attracted scientific attention for the past 200 years. Despite being represented in many familiar plants (such as bald cypress, flowering dogwood, sweetgum, partridgeberry, etc.), the eastern North American (ENA)–Mexican (M) disjunction remains poorly understood. Major outstanding questions include the divergence times of taxa exhibiting the disjunction and environmental/geological processes that may underlie the disjunction. Symphyotrichum Nees (Asteraceae), one of the most diverse genera in the eastern USA, displays several examples of disjunct ENA–M taxa.MethodsWe generated target capture data using the Angiosperms353 baitset and generated the first well‐sampled phylogenomic hypothesis for Symphyotrichum and its close relatives. Focusing on S. subgenus Virgulus, we used MCMCTREE to perform divergence time estimation and the R package BioGeoBEARS to infer ancestral regions and biogeographic transitions between North America and Mexico. Finally, we used the ancestral niche reconstruction method Utremi to test for a role of historical aridification in generating the disjunction.ResultsOur molecular data suggest a recent radiation of Symphyotrichum at the Plio‐Pleistocene boundary (~2.5 mya), with early connections to Mexico in ancestral lineages that closed off shortly after and were followed by vicariance across this region. Except for some present‐day broadly distributed species, there is a complete lack of movement between ENA and M after ~0.5 mya.ConclusionsA reconstructed disjunct distribution of suitable habitat in Pleistocene climatic models corroborates results from biogeographic modeling and confirms glacial cycles are more likely to be associated with the breakup of ENA–M biogeographic connections.
Zhao, J., J.-G. Wang, Y.-P. Hu, C.-J. Huang, S.-L. Fang, Z.-Y. Wan, R.-J. Li, et al. 2025. Phylogenetic Inferences and Historical Biogeography of Onocleaceae. Plants 14: 510. https://doi.org/10.3390/plants14040510
The family Onocleaceae represents a small family of terrestrial ferns, with four genera and around five species. It has a circumboreal to north temperate distribution, and exhibits a disjunct distribution between Eurasia and North America, including Mexico. Historically, the taxonomy and classification of this family has been subject to debate and contention among scholars, leading to contradictory classifications and disagreements on the number of genera and species within the family. Furthermore, due to this disjunct intercontinental distribution and the lack of detailed study across its wide range, this family merits further study to clarify its distributional pattern. Maximum likelihood and Bayesian phylogenetic reconstructions were based on a concatenated sequence dataset for 17 plastid loci and one nuclear locus, which were generated from 106 ingroup and six outgroup taxa from three families. Phylogenetic analyses support that Onocleaceae is composed of four main clades, and Pentarhizidium was recovered as the first branching lineages in Onocleaceae. Molecular dating and ancestral area reconstruction analyses suggest that the stem group of Onocleaceae originated in Late Cretaceous, with subsequent diversification and establishment of the genera Matteuccia, Onoclea, Onocleopsis, and Pentarhizidium during the Paleogene and Neogene. The ancestors of Matteuccia, Onoclea, and Onocleopsis could have migrated to North America via the Beringian land bridge or North Atlantic land bridge which suggests that the diversification of Matteuccia + Onoclea + Onocleopsis closely aligns with the Paleocene-Eocene Thermal Maximum (PETM). In addition, these results suggest that Onocleaceae species diversity peaks during the late Neogene to Quaternary. Studies such as this enhance our understanding of the mechanisms and climatic conditions shaping disjunct distribution in ferns and lycophytes of eastern Asia, North America, and Mexico and contribute to a growing body of evidence from other taxa, to advance our understanding of the origins and migration of plants across continents.
Roberts, J., and S. Florentine. 2025. Current and future management challenges for globally invasive grasses, with special reference to Echinochloa crus‐galli, Panicum capillare and Sorghum halepense. Weed Research 65. https://doi.org/10.1111/wre.70005
Without appropriate and ongoing management interventions, weeds will continue to economically and environmentally disadvantage agricultural and natural ecosystems. For these management strategies to have long‐term sustained success, they need to carefully consider the biological aspects of the targeted weed. These strategies will also need to consider potential adaptations evolved by the targeted weed in response to a range of selection pressures imposed by anthropogenetic factors, climate change, changing environmental conditions, and inappropriate or unsuccessful management regimes. One group of weeds that has been observed to readily adapt to a wide range of conditions and has shown considerable challenges in their management is invasive grasses. Adding to these challenges is that several invasive grasses have also developed resistance to a range of herbicide modes of action, which, to date, has been one of the most commonly used methods of control. To address these challenges, this review explores the biology and ecology of the globally invasive annuals Echinochloa crus‐galli (Barnyard grass) and Panicum capillare (Witchgrass), and the perennial Sorghum halepense (Johnson grass) to identify (i) the most suitable management options for their control and (ii) potential research gaps that may assist in the future management direction of these species. Based on the findings of this review, it is clear that an integrated management approach that targets different aspects of the plant's biology, in combination with early detection and treatment and ongoing surveillance, is necessary for the long‐term control of these species. Although a combination of methods appears promising, further investigation still is required to evaluate their efficiency and long‐term success in a changing environment, all of which are further discussed within this review.
Streiff, S. J. R., E. O. Ravomanana, M. Rakotoarinivo, M. Pignal, E. P. Pimparé, R. H. J. Erkens, and T. L. P. Couvreur. 2024. High-quality herbarium-label transcription by citizen scientists improves taxonomic and spatial representation of the tropical plant family Annonaceae. Adansonia 46. https://doi.org/10.5252/adansonia2024v46a18
Herbarium specimens provide an important and central resource for biodiversity research. Making these records digitally available to end-users represents numerous challenges, in particular, transcribing metadata associated with specimen labels. In this study, we used the citizen science initiative ‘Les Herbonautes’ and the Récolnat network to transcribe specific data from all herbarium specimen labels stored at the Muséum national d’Histoire naturelle in Paris of the large tropical plant family Annonaceae. We compared this database with publicly available global biodiversity repository data and expert checklists. We investigated spatial and taxonomic advances in data availability at the global and country scales. A total of 20 738 specimens were transcribed over the course of more than two years contributing to and significantly extending the previously available specimen and species data for Annonaceae worldwide. We show that several regions, mainly in Africa and South East Asia not covered by online global datasets, are uniquely available in the P herbarium, probably linked to past history of the museum’s botanical exploration. While acknowledging the challenges faced during the transcription of historic specimens by citizen scientists, this study highlights the positive impact of adding records to global datasets both in space and time. This is illustrative for researchers, collection managers, policy makers as well as funders. These datasets will be valuable for numerous future studies in biodiversity research, including ecology, evolution, conservation and climate change science.
Tulowiecki, S. J., and N. LaDuke. 2024. Models reveal shifting distribution of climatic suitability for pawpaw (Asimina triloba [L.] Dunal) cultivation under future climate change scenarios. Scientia Horticulturae 338: 113837. https://doi.org/10.1016/j.scienta.2024.113837
The pawpaw (Asimina triloba [L.] Dunal) is a deciduous tree notable for its large edible fruit. Native to the eastern US and Canada, it has earned attention as a horticultural commodity and focus of scientific inquiry. However, few studies have modeled its potential future distribution under climate change. This study predicted the current and future potential distribution for pawpaw in North America and globally, with a focus on understanding future climatic suitability for fruit cultivation. This study first modeled suitability via the Maximum Entropy (MaxEnt) method by relating climate predictors with different datasets on pawpaw distribution, including nursery locations growing pawpaw. It also trained a boosted regression tree (BRT) model to estimate where sufficient heat accumulation for fruit ripening would occur. The models were applied to two future times (2041–2060 and 2081–2100), four emissions scenarios (SSP126, SSP245, SSP370, and SSP585), and climate projections from three climate models. Using nursery locations, the MaxEnt model yielded a mean area-under-the-curve statistic of 0.978 (standard deviation = 0.009) using 10-fold cross-validation, indicating strong predictive performance. The model suggested optimal conditions for pawpaw at these values: -4 °C for minimum temperature of coldest month, 26 °C for maximum temperature of warmest month, 88 cm for annual precipitation, and 0 % for precipitation seasonality. Models suggested shifting suitable climate conditions and accompanying increases in heat accumulation for fruit ripening. Northern America, Eastern Europe, and Northern Europe were predicted to have higher and increasing suitability; Western Europe, Southern Europe, and Eastern Asia were predicted to have higher but decreasing suitability. Little uncertainty existed due to collinearity shift or dissimilarity between current and future climate, but more uncertainty existed when predictions were based on differing climate model projections. This study provides insight into the pawpaw's potential response to climate change, and guidance on future locations for cultivation.
H. S. Min, H. Shinwoo, and K. K. Soo. 2024. Ensemble Projection of Climate Suitability for Alfalfa (Medicago Sativa L.) in Hamkyongbukdo. Journal of The Korean Society of Grassland and Forage Science 44: 71–82. https://doi.org/10.5333/kgfs.2024.44.2.71
It would be advantageous to grow legume forage crops in order to increase the productivity and sustainability of sloped croplands in Hamkyongbukdo. In particular, the identification of potential cultivation areas for alfalfa in the given region could aid decision-making on policies and management related to forage crop production in the future. This study aimed to analyze the climate suitability of alfalfa in Hamkyongbukdo under current and future climate conditions using the Fuzzy Union model. The climate suitability predicted by the Fuzzy Union model was compared with the actual alfalfa cultivation area in the northern United States. Climate data obtained from 11 global climate models were used as input data for calculation of climate suitability in the study region to examine the uncertainty of projections under future climate conditions. The area where the climate suitability index was greater than a threshold value (22.6) explained about 44% of the variation in actual alfalfa cultivation areas by state in the northern United States. The climatic suitability of alfalfa was projected to decrease in most areas of Hamkyongbukdo under future climate scenarios. The climatic suitability in Onseong and Gyeongwon County was analyzed to be over 88 in the current climate conditions. However, it was projected to decrease by about 66% in the given areas by the 2090s. Our study illustrated that the impact of climate change on suitable cultivation areas was highly variable when different climate data were used as inputs to the Fuzzy Union model. Still, the ensemble of the climate suitability projections for alfalfa was projected to decrease considerably due to summer depression in Hamkyongbukdo. It would be advantageous to predict suitable cultivation areas by adding soil conditions or to predict the climate suitability of other leguminous crops such as hairy vetch, which merits further studies.
Reichgelt, T. 2024. Linking the macroclimatic niche of native lithophytic ferns and their prevalence in urban environments. American Journal of Botany 111. https://doi.org/10.1002/ajb2.16364
Premise Vertical surfaces in urban environments represent a potential expansion of niche space for lithophytic fern species. There are, however, few records of differential success rates of fern species in urban environments.MethodsThe occurrence rates of 16 lithophytic fern species native to the northeastern USA in 14 biomes, including four urban environments differentiated by percentage of impervious surfaces, were evaluated. In addition, the natural macroclimatic ranges of these species were analyzed to test whether significant differences existed in climatic tolerance between species that occur in urban environments and species that do not.ResultsThree species appear to preferentially occur in urban environments, two species may facultatively occur in urban environments, and the remaining 11 species preferentially occur in nondeveloped rural environments. The natural range of fern species that occur in urban environments had higher summer temperatures than the range of species that do not, whereas other macroclimatic variables, notably winter temperatures and precipitation, were less important or insignificant.ConclusionsVertical surfaces in urban environments may represent novel niche space for some native lithophytic fern species in northeastern USA. However, success in this environment depends, in part, on tolerance of the urban heat island effect, especially heating of impervious surfaces in summer.
Xiao, S., S. Li, J. Huang, X. Wang, M. Wu, R. Karim, W. Deng, and T. Su. 2024. Influence of climate factors on the global dynamic distribution of Tsuga (Pinaceae). Ecological Indicators 158: 111533. https://doi.org/10.1016/j.ecolind.2023.111533
Throughout the Quaternary period, climate change has significantly influenced plant distribution, particularly affecting species within the genus Tsuga (Endl.) Carrière. This climatic impact ultimately led to the extinction of all Tsuga species in Europe. Today, there are ten recognized species of Tsuga worldwide, one of listed as a vulnerable species and four as near-threatened species. The genus Tsuga exhibits a disjunctive distribution in East Asia (EA), eastern North America (ENA), and western North America (WNA). It is crucial to comprehend the mechanisms underlying these distributional changes and to identify key climate variables to develop effective conservation strategies for Tsuga under future climate scenarios. In this study, we applied the maximum entropy (MaxEnt) model by combining distribution data for Tsuga with abundant pollen fossil data. Our objective was to investigate the climate factors that shape the distribution of Tsuga, identify climate thresholds, and elucidate distribution dynamics in the context of significant climate changes over the past 1070 thousand years (ka). Our findings highlight the pivotal role of precipitation as the key climate factor affecting the distribution of Tsuga. Specifically, in EA, summer precipitation was the key driver, while in North America (NA), winter precipitation exerted greater importance. Moreover, we observed similarities in climatic requirements between Tsuga species in Europe and EA, and declines in summer precipitation and winter temperature were major factors contributing to the extinction of Tsuga species in Europe. Quaternary glacial and interglacial fluctuations exerted substantial impacts on Tsuga distribution dynamics. The disappearance of Tsuga species in the Korean Peninsula may have occurred during the LGM (Last Glacial Maximum). The potential suitable area for Tsuga species in EA expanded during the cold periods, while in NA, it contracted. In the future, climate change may result Tsuga distribution area contraction in both the EA and NA. Our study has identified distinct response patterns of Tsuga in various geographic regions to Quaternary climate change and offers corresponding suggestions for Tsuga conservation. In the future, it will be imperative to prioritize the conservation of natural Tsuga distributions in EA and NA, with a focus on the impacts of precipitation fluctuation on the dynamic distribution of this genus.
Qin, F., T. Xue, X. Zhang, X. Yang, J. Yu, S. R. Gadagkar, and S. Yu. 2023. Past climate cooling and orogenesis of the Hengduan Mountains have influenced the evolution of Impatiens sect. Impatiens (Balsaminaceae) in the Northern Hemisphere. BMC Plant Biology 23. https://doi.org/10.1186/s12870-023-04625-w
Background Impatiens sect. Impatiens is distributed across the Northern Hemisphere and has diversified considerably, particularly within the Hengduan Mountains (HDM) in southwest China. Yet, the infra-sectional phylogenetic relationships are not well resolved, largely due to limited taxon sampling and an insufficient number of molecular markers. The evolutionary history of its diversification is also poorly understood. In this study, plastome data and the most complete sampling to date were used to reconstruct a robust phylogenetic framework for this section. The phylogeny was then used to investigate its biogeographical history and diversification patterns, specifically with the aim of understanding the role played by the HDM and past climatic changes in its diversification. Results A stable phylogeny was reconstructed that strongly supported both the monophyly of the section and its division into seven major clades (Clades I-VII). Molecular dating and ancestral area reconstruction suggest that sect. Impatiens originated in the HDM and Southeast China around 11.76 Ma, after which different lineages dispersed to Northwest China, temperate Eurasia, and North America, mainly during the Pliocene and Pleistocene. An intercontinental dispersal event from East Asia to western North America may have occurred via the Bering Land Bridge or Aleutian Islands. The diversification rate was high during its early history, especially with the HDM, but gradually decreased over time both within and outside the HDM. Multiple linear regression analysis showed that the distribution pattern of species richness was strongly associated with elevation range, elevation, and mean annual temperature. Finally, ancestral niche analysis indicated that sect. Impatiens originated in a relatively cool, middle-elevation area. Conclusions We inferred the evolutionary history of sect. Impatiens based on a solid phylogenetic framework. The HDM was the primary source or pump of its diversity in the Northern Hemisphere. Orogeny and climate change may have also shaped its diversification rates, as a steady decrease in the diversification rate coincided with the uplift of the HDM and climate cooling. These findings provide insights into the distribution pattern of sect. Impatiens and other plants in the Northern Hemisphere.
Rodríguez-Merino, A. 2023. Identifying and Managing Areas under Threat in the Iberian Peninsula: An Invasion Risk Atlas for Non-Native Aquatic Plant Species as a Potential Tool. Plants 12: 3069. https://doi.org/10.3390/plants12173069
Predicting the likelihood that non-native species will be introduced into new areas remains one of conservation’s greatest challenges and, consequently, it is necessary to adopt adequate management measures to mitigate the effects of future biological invasions. At present, not much information is available on the areas in which non-native aquatic plant species could establish themselves in the Iberian Peninsula. Species distribution models were used to predict the potential invasion risk of (1) non-native aquatic plant species already established in the peninsula (32 species) and (2) those with the potential to invade the peninsula (40 species). The results revealed that the Iberian Peninsula contains a number of areas capable of hosting non-native aquatic plant species. Areas under anthropogenic pressure are at the greatest risk of invasion, and the variable most related to invasion risk is temperature. The results of this work were used to create the Invasion Risk Atlas for Alien Aquatic Plants in the Iberian Peninsula, a novel online resource that provides information about the potential distribution of non-native aquatic plant species. The atlas and this article are intended to serve as reference tools for the development of public policies, management regimes, and control strategies aimed at the prevention, mitigation, and eradication of non-native aquatic plant species.