Science Enabled by Specimen Data

Grether, G. F., A. E. Finneran, and J. P. Drury. 2023. Niche differentiation, reproductive interference, and range expansion. Ecology Letters.

Understanding species distributions and predicting future range shifts requires considering all relevant abiotic factors and biotic interactions. Resource competition has received the most attention, but reproductive interference is another widespread biotic interaction that could influence species ranges. Rubyspot damselflies (Hetaerina spp.) exhibit a biogeographic pattern consistent with the hypothesis that reproductive interference has limited range expansion. Here, we use ecological niche models to evaluate whether this pattern could have instead been caused by niche differentiation. We found evidence for climatic niche differentiation, but the species that encounters the least reproductive interference has one of the narrowest and most peripheral niches. These findings strengthen the case that reproductive interference has limited range expansion and also provide a counterexample to the idea that release from negative species interactions triggers niche expansion. We propose that release from reproductive interference enables species to expand in range while specializing on the habitats most suitable for breeding.

Cruz, J. A., J. A. Velasco, J. Arroyo-Cabrales, and E. Johnson. 2023. Paleoclimatic Reconstruction Based on the Late Pleistocene San Josecito Cave Stratum 720 Fauna Using Fossil Mammals, Reptiles, and Birds. Diversity 15: 881.

Advances in technology have equipped paleobiologists with new analytical tools to assess the fossil record. The functional traits of vertebrates have been used to infer paleoenvironmental conditions. In Quaternary deposits, birds are the second-most-studied group after mammals. They are considered a poor paleoambiental proxy because their high vagility and phenotypic plasticity allow them to respond more effectively to climate change. Investigating multiple groups is important, but it is not often attempted. Biogeographical and climatic niche information concerning small mammals, reptiles, and birds have been used to infer the paleoclimatic conditions present during the Late Pleistocene at San Josecito Cave (~28,000 14C years BP), Mexico. Warmer and dryer conditions are inferred with respect to the present. The use of all of the groups of small vertebrates is recommended because they represent an assemblage of species that have gone through a series of environmental filters in the past. Individually, different vertebrate groups provide different paleoclimatic information. Birds are a good proxy for inferring paleoprecipitation but not paleotemperature. Together, reptiles and small mammals are a good proxy for inferring paleoprecipitation and paleotemperature, but reptiles alone are a bad proxy, and mammals alone are a good proxy for inferring paleotemperature and precipitation. The current paleoclimatic results coupled with those of a previous vegetation structure analysis indicate the presence of non-analog paleoenvironmental conditions during the Late Pleistocene in the San Josecito Cave area. This situation would explain the presence of a disharmonious fauna and the extinction of several taxa when these conditions later disappeared and do not reappear again.

Moore, M. P., and F. Khan. 2023. Relatively large wings facilitate life at higher elevations among Nearctic dragonflies. Journal of Animal Ecology.

Determining which traits allow species to live at higher elevations is essential to understanding the forces that shape montane biodiversity.For the many animals that rely on flight for locomotion, a long‐standing hypothesis is that species with relatively large wings should better persist in high‐elevation environments because wings that are large relative to the body generate more lift and decrease the aerobic costs of remaining aloft. Although these biomechanical and physiological predictions have received some support in birds, other flying taxa often possess smaller wings at high elevations or no wings at all.To test if predictions about the requirements for relative wing size at high elevations are generalizable beyond birds, we conducted macroecological analyses on the altitudinal characteristics of 302 Nearctic dragonfly species.Consistent with the biomechanical and aerobic hypotheses, species with relatively larger wings live at higher elevations and have wider elevation breadths—even after controlling for a species' body size, mean thermal conditions, and range size. Moreover, a species' relative wing size had nearly as large of an impact on its maximum elevation as being adapted to the cold.Relatively large wings may be essential to high‐elevation life in species that completely depend on flight for locomotion, like dragonflies or birds. With climate change forcing taxa to disperse upslope, our findings further suggest that relatively large wings could be a requirement for completely volant taxa to persist in montane habitats.

Oliveira-Dalland, L. G., L. R. V. Alencar, L. R. Tambosi, P. A. Carrasco, R. M. Rautsaw, J. Sigala-Rodriguez, G. Scrocchi, and M. Martins. 2022. Conservation gaps for Neotropical vipers: Mismatches between protected areas, species richness and evolutionary distinctiveness. Biological Conservation 275: 109750.

The continuous decline in biodiversity despite global efforts to create new protected areas calls into question the effectiveness of these areas in conserving biodiversity. Numerous habitats are absent from the global protected area network, and certain taxonomic groups are not being included in conservation planning. Here, we analyzed the level of protection that the current protected area system provides to viper species in the Neotropical region through a conservation gap analysis. We used distribution size and degree of threat to set species-specific conservation goals for 123 viper species in the form of minimum percentage of their distribution that should be covered by protected areas, and assessed the level of protection provided for each species by overlapping their distribution with protected areas of strict protection. Furthermore, using species richness and evolutionary distinctiveness as priority indicators, we conducted a spatial association analysis to detect areas of special concern. We found that most viper species have <1/4 of their distribution covered by protected areas, including 22 threatened species. Also, the large majority of cells containing high levels of species richness were significantly absent from protected areas, while evolutionary distinctiveness was particularly unprotected in regions with relatively low species richness, like northern Mexico and the Argentinian dry Chaco. Our results provide further evidence that vipers are largely being excluded from conservation planning, leaving them exposed to serious threats that can lead to population decline and ultimately extinction.

Castaño-Quintero, S. M., J. Escobar-Luján, F. Villalobos, L. M. Ochoa-Ochoa, and C. Yáñez-Arenas. 2022. Amphibian Diversity of the Yucatan Peninsula: Representation in Protected Areas and Climate Change Impacts. Diversity 14: 813.

Knowledge about the dynamics of regional diversity patterns is a foundation on which measures aimed to protect diversity dimensions in the light of climate change can be constructed. Here, we describe taxonomic, phylogenetic, and functional diversity patterns of amphibians in the Yucatan Peninsula and their representation in the current protected area system. We stacked current and future potential distribution models to estimate taxonomic diversity and, based on the most recent amphibian phylogeny and nine functional traits, we measured phylogenetic and functional diversity. Independent phylogenetic and functional metrics were obtained by applying null models that allowed us to identify the presumably signature mechanisms underlying assemblage formation. We evaluated the effectiveness of the protected areas in protecting diversity dimensions across scenarios. We found phylogenetic and functional clustering as a result of environmental filters that have allowed only recently diverged species with converged functional traits to establish. Nevertheless, random assemblages are more widespread possibly due to the opposite directions in which competition and environmental filtering are acting. Overall, a decrease in all diversity dimensions is projected under future climate change scenarios compared with the current time. None of the protected areas evaluated were effective in protecting diversity dimensions, stressing the need to complete the existing protected areas network.

Rautsaw, R. M., G. Jiménez-Velázquez, E. P. Hofmann, L. R. V. Alencar, C. I. Grünwald, M. Martins, P. Carrasco, et al. 2022. VenomMaps: Updated species distribution maps and models for New World pitvipers (Viperidae: Crotalinae). Scientific Data 9.

Beyond providing critical information to biologists, species distributions are useful for naturalists, curious citizens, and applied disciplines including conservation planning and medical intervention. Venomous snakes are one group that highlight the importance of having accurate information given their cosmopolitan distribution and medical significance. Envenomation by snakebite is considered a neglected tropical disease by the World Health Organization and venomous snake distributions are used to assess vulnerability to snakebite based on species occurrence and antivenom/healthcare accessibility. However, recent studies highlighted the need for updated fine-scale distributions of venomous snakes. Pitvipers (Viperidae: Crotalinae) are responsible for >98% of snakebites in the New World. Therefore, to begin to address the need for updated fine-scale distributions, we created VenomMaps, a database and web application containing updated distribution maps and species distribution models for all species of New World pitvipers. With these distributions, biologists can better understand the biogeography and conservation status of this group, researchers can better assess vulnerability to snakebite, and medical professionals can easily discern species found in their area. Measurement(s) Species Distributions Technology Type(s) Geographic Information System • Species Distribution Model (MaxEnt/kuenm) Factor Type(s) Occurrence Records • Environmental Data Sample Characteristic - Organism Crotalinae Sample Characteristic - Location North America • South America

Shirey, V., R. Khelifa, L. K. M’Gonigle, and L. M. Guzman. 2022. Occupancy–detection models with museum specimen data: Promise and pitfalls. Methods in Ecology and Evolution.

1. Historical museum records provide potentially useful data for identifying drivers of change in species occupancy. However, because museum records are typically obtained via many collection methods, methodological developments are needed in order to enable robust inferences. Occupancy‐detection models, a relatively new and powerful suite of statistical methods, are a potentially promising avenue because they can account for changes in collection effort through space and time.

Espindola, S., E. Vázquez‐Domínguez, M. Nakamura, L. Osorio‐Olvera, E. Martínez‐Meyer, E. A. Myers, I. Overcast, et al. 2022. Complex genetic patterns and distribution limits mediated by native congeners of the worldwide invasive red‐eared slider turtle. Molecular Ecology 31: 1766–1782.

Non-native (invasive) species offer a unique opportunity to study the geographical distribution and range limits of species, wherein the evolutionary change driven by interspecific interactions between native and non-native closely related species is a key component. The red-eared slider turtle, Tra…

García‐Rodríguez, A., M. D. Basanta, M. G. García‐Castillo, H. Zumbado‐Ulate, K. Neam, S. Rovito, C. L. Searle, and G. Parra‐Olea. 2021. Anticipating the potential impacts of Batrachochytrium salamandrivorans on Neotropical salamander diversity. Biotropica 54: 157–169.

Emergent infectious disease caused by the fungal pathogens Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal) represents one of the major causes of biodiversity loss in amphibians. While Bd has affected amphibians worldwide, Bsal remains restricted to Asia and Europe, b…

Lewthwaite, J. M. M., and A. Ø. Mooers. 2021. Geographical homogenization but little net change in the local richness of Canadian butterflies A. Baselga [ed.],. Global Ecology and Biogeography 31: 266–279.

Aim: Recent studies have found that local-scale plots measured through time exhibit marked variation in the change in species richness. However, the overall effect often reveals no net change. Most studies to date have been agnostic about the identities of the species lost/gained and about the proce…