Science Enabled by Specimen Data

Cahen, D., Rickenback, J., & Utteridge, T. M. A. (2021). A revision of Ziziphus (Rhamnaceae) in Borneo. Kew Bulletin. doi:10.1007/s12225-021-09970-3 https://doi.org/10.1007/s12225-021-09970-3

The genus Ziziphus (Rhamnaceae) is revised for Borneo. 13 species are recognised using morphological evidence, including three new endemic species: Ziziphus cuspidata, Z. domatiata and Z. puberula. Borneo is therefore the island with the greatest known diversity of Ziziphus species. The area surroun…

Xue, T., Gadagkar, S. R., Albright, T. P., Yang, X., Li, J., Xia, C., … Yu, S. (2021). Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation, 32, e01885. doi:10.1016/j.gecco.2021.e01885 https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…

Wang, C.-J., & Wan, J.-Z. (2021). Functional trait perspective on suitable habitat distribution of invasive plant species at a global scale. Perspectives in Ecology and Conservation. doi:10.1016/j.pecon.2021.07.002 https://doi.org/10.1016/j.pecon.2021.07.002

Plant invasion has been proved to threaten biodiversity conservation and ecosystem maintenance at a global scale. It is a challenge to project suitable habitat distributions of invasive plant species (IPS) for invasion risk assessment at large spatial scales. Interaction outcomes between native and …

Saldaña‐López, A., Vilà, M., Lloret, F., Manuel Herrera, J., & González‐Moreno, P. (2021). Assembly of species’ climatic niches of coastal communities does not shift after invasion. Journal of Vegetation Science, 32(2). doi:10.1111/jvs.12989 https://doi.org/10.1111/jvs.12989

Question: Do invasions by invasive plant species with contrasting trait profiles (Arctotheca calendula, Carpobrotus spp., Conyza bonariensis, and Opuntia dillenii) change the climatic niche of coastal plant communities? Location: Atlantic coastal habitats in Huelva (Spain). Methods: We identifi…

De Jesús Hernández-Hernández, M., Cruz, J. A., & Castañeda-Posadas, C. (2020). Paleoclimatic and vegetation reconstruction of the miocene southern Mexico using fossil flowers. Journal of South American Earth Sciences, 104, 102827. doi:10.1016/j.jsames.2020.102827 https://doi.org/10.1016/j.jsames.2020.102827

Concern about the course of the current environmental problems has raised interest in investigating the different scenarios that have taken place in our planet throughout time. To that end, different methodologies have been employed in order to determine the different variables that compose the envi…

Bellot, S., Bayton, R. P., Couvreur, T. L. P., Dodsworth, S., Eiserhardt, W. L., Guignard, M. S., … Baker, W. J. (2020). On the origin of giant seeds: the macroevolution of the double coconut ( Lodoicea maldivica ) and its relatives (Borasseae, Arecaceae). New Phytologist. doi:10.1111/nph.16750 https://doi.org/10.1111/nph.16750

Seed size shapes plant evolution and ecosystems, and may be driven by plant size and architecture, dispersers, habitat and insularity. How these factors influence the evolution of giant seeds is unclear, as are the rate of evolution and the biogeographical consequences of giant seeds. We generated D…

Jahanshiri, E., Mohd Nizar, N. M., Tengku Mohd Suhairi, T. A. S., Gregory, P. J., Mohamed, A. S., Wimalasiri, E. M., & Azam-Ali, S. N. (2020). A Land Evaluation Framework for Agricultural Diversification. Sustainability, 12(8), 3110. doi:10.3390/su12083110 https://doi.org/10.3390/su12083110

Shortlisting ecologically adaptable plant species can be a starting point for agricultural diversification projects. We propose a rapid assessment framework based on an ecological model that can accelerate the evaluation of options for sustainable crop diversification. To test the new model, expert-…

Rivera, D., Abellán, J., Palazón, J. A., Obón, C., Alcaraz, F., Carreño, E., … Johnson, D. (2020). Modelling ancient areas for date palms (Phoenix species: Arecaceae): Bayesian analysis of biological and cultural evidence. Botanical Journal of the Linnean Society, 193(2), 228–262. doi:10.1093/botlinnean/boaa011 https://doi.org/10.1093/botlinnean/boaa011

Our aim in this study is to build a model for the expansion of date palms (Phoenix spp., Arecaceae) that can be linked to domestication processes. Palaeontological and archaeobotanical evidence concerning date palm is extremely diversified around the Mediterranean Basin and in West Asia, mainly cons…

Asase, A., Sainge, M. N., Radji, R. A., Ugbogu, O. A., & Peterson, A. T. (2020). A new model for efficient, need‐driven progress in generating primary biodiversity information resources. Applications in Plant Sciences, 8(1). doi:10.1002/aps3.11318 https://doi.org/10.1002/aps3.11318

Premise: The field of biodiversity informatics has developed rapidly in recent years, with broad availability of large‐scale information resources. However, online biodiversity information is biased spatially as a result of slow and uneven capture and digitization of existing data resources. The Wes…

Marconi, L., & Armengot, L. (2020). Complex agroforestry systems against biotic homogenization: The case of plants in the herbaceous stratum of cocoa production systems. Agriculture, Ecosystems & Environment, 287, 106664. doi:10.1016/j.agee.2019.106664 https://doi.org/10.1016/j.agee.2019.106664

In addition to their potential against deforestation and climate change, agroforestry systems may have a relevant role in biodiversity conservation. In this sense, not only species richness per se, but also community composition, including the distribution range of the species, should be considered.…