Science Enabled by Specimen Data

Bürger, M., and J. Chory. 2024. A potential role of heat‐moisture couplings in the range expansion of Striga asiatica. Ecology and Evolution 14. https://doi.org/10.1002/ece3.11332

Parasitic weeds in the genera Orobanche, Phelipanche (broomrapes) and Striga (witchweeds) have a devastating impact on food security across much of Africa, Asia and the Mediterranean Basin. Yet, how climatic factors might affect the range expansion of these weeds in the context of global environmental change remains unexplored. We examined satellite‐based environmental variables such as surface temperature, root zone soil moisture, and elevation, in relation to parasitic weed distribution and environmental conditions over time, in combination with observational data from the Global Biodiversity Information Facility (GBIF). Our analysis reveals contrasting environmental and altitude preferences in the genera Striga and Orobanche. Asiatic witchweed (Striga asiatica), which infests corn, rice, sorghum, and sugar cane crops, appears to be expanding its range in high elevation habitats. It also shows a significant association with heat‐moisture coupling events, the frequency of which is rising in such environments. These results point to geographical shifts in distribution and abundance in parasitic weeds due to climate change.

Novoa, A., H. Hirsch, M. L. Castillo, S. Canavan, L. González, D. M. Richardson, P. Pyšek, et al. 2023. Genetic and morphological insights into the Carpobrotus hybrid complex around the world. NeoBiota 89: 135–160. https://doi.org/10.3897/neobiota.89.109164

The genus Carpobrotus N.E.Br. comprises between 12 and 25 species, most of which are native to South Africa. Some Carpobrotus species are considered among the most damaging invasive species in coastal dune systems worldwide. In their introduced areas, these species represent a serious threat to native species and significantly impact soil conditions and geochemical processes. Despite being well studied, the taxonomy of Carpobrotus remains problematic, as the genus comprises a complex of species that hybridize easily and are difficult to distinguish from each other. To explore the population genetic structure of invasive Carpobrotus species (i.e., C. acinaciformis and C. edulis) across a significant part of their native and non-native ranges, we sampled 40 populations across Argentina, Italy, New Zealand, Portugal, South Africa, Spain, and the USA. We developed taxon-specific microsatellite markers using a Next Generation Sequencing approach to analyze the population genetic structure and incidence of hybridization in native and non-native regions. We identified three genetically distinct clusters, which are present in both the native and non-native regions. Based on a set of selected morphological characteristics, we found no clear features to identify taxa morphologically. Our results suggest that the most probable sources of global introductions of Carpobrotus species are the Western Cape region of South Africa and the coastline of California. We suggest that management actions targeting Carpobrotus invasions globally should focus on preventing additional introductions from the east coast of South Africa, and on searching for prospective biocontrol agents in the Western Cape region of South Africa.

Cousins-Westerberg, R., N. Dakin, L. Schat, G. Kadereit, and A. M. Humphreys. 2023. Evolution of cold tolerance in the highly stress-tolerant samphires and relatives (Salicornieae: Amaranthaceae). Botanical Journal of the Linnean Society. https://doi.org/10.1093/botlinnean/boad009

Low temperature constitutes one of the main barriers to plant distributions, confining many clades to their ancestrally tropical biome. However, recent evidence suggests that transitions from tropical to temperate biomes may be more frequent than previously thought. Here, we study the evolution of cold and frost tolerance in the globally distributed and highly stress-tolerant Salicornieae (Salicornioideae, Amaranthaceae s.l.). We first generate a phylogenetic tree comprising almost all known species (85-90%), using newly generated (n = 106) and published nuclear-ribosomal and plastid sequences. Next, we use geographical occurrence data to document in which clades and geographical regions cold-tolerant species occur and reconstruct how cold tolerance evolved. Finally, we test for correlated evolution between frost tolerance and the annual life form. We find that frost tolerance has evolved independently in up to four Northern Hemisphere lineages but that annuals are no more likely to evolve frost tolerance than perennials, indicating the presence of different strategies for adapting to cold environments. Our findings add to mounting evidence for multiple independent out-of-the-tropics transitions among close relatives of flowering plants and raise new questions about the ecological and physiological mechanism(s) of adaptation to low temperatures in Salicornieae.

Marcussen, T., H. E. Ballard, J. Danihelka, A. R. Flores, M. V. Nicola, and J. M. Watson. 2022. A Revised Phylogenetic Classification for Viola (Violaceae). Plants 11: 2224. https://doi.org/10.3390/plants11172224

The genus Viola (Violaceae) is among the 40–50 largest genera among angiosperms, yet its taxonomy has not been revised for nearly a century. In the most recent revision, by Wilhelm Becker in 1925, the then-known 400 species were distributed among 14 sections and numerous unranked groups. Here, we provide an updated, comprehensive classification of the genus, based on data from phylogeny, morphology, chromosome counts, and ploidy, and based on modern principles of monophyly. The revision is presented as an annotated global checklist of accepted species of Viola, an updated multigene phylogenetic network and an ITS phylogeny with denser taxon sampling, a brief summary of the taxonomic changes from Becker’s classification and their justification, a morphological binary key to the accepted subgenera, sections and subsections, and an account of each infrageneric subdivision with justifications for delimitation and rank including a description, a list of apomorphies, molecular phylogenies where possible or relevant, a distribution map, and a list of included species. We distribute the 664 species accepted by us into 2 subgenera, 31 sections, and 20 subsections. We erect one new subgenus of Viola (subg. Neoandinium, a replacement name for the illegitimate subg. Andinium), six new sections (sect. Abyssinium, sect. Himalayum, sect. Melvio, sect. Nematocaulon, sect. Spathulidium, sect. Xanthidium), and seven new subsections (subsect. Australasiaticae, subsect. Bulbosae, subsect. Clausenianae, subsect. Cleistogamae, subsect. Dispares, subsect. Formosanae, subsect. Pseudorupestres). Evolution within the genus is discussed in light of biogeography, the fossil record, morphology, and particular traits. Viola is among very few temperate and widespread genera that originated in South America. The biggest identified knowledge gaps for Viola concern the South American taxa, for which basic knowledge from phylogeny, chromosome counts, and fossil data is virtually absent. Viola has also never been subject to comprehensive anatomical study. Studies into seed anatomy and morphology are required to understand the fossil record of the genus.

Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…

Bontrager, M., T. Usui, J. A. Lee‐Yaw, D. N. Anstett, H. A. Branch, A. L. Hargreaves, C. D. Muir, and A. L. Angert. 2021. Adaptation across geographic ranges is consistent with strong selection in marginal climates and legacies of range expansion. Evolution 75: 1316–1333. https://doi.org/10.1111/evo.14231

Every species experiences limits to its geographic distribution. Some evolutionary models predict that populations at range edges are less well‐adapted to their local environments due to drift, expansion load, or swamping gene flow from the range interior. Alternatively, populations near range edges…

van Treuren, R., R. Hoekstra, R. Wehrens, and T. van Hintum. 2020. Effects of climate change on the distribution of crop wild relatives in the Netherlands in relation to conservation status and ecotope variation. Global Ecology and Conservation 23: e01054. https://doi.org/10.1016/j.gecco.2020.e01054

Crop wild relatives (CWR) are wild plant taxa that are genetically related to a cultivated species and are considered rich sources of useful traits for crop improvement. CWR are generally underrepresented in genebanks, while their survival in nature is not guaranteed. Inventories and risk analyses a…

Goodwin, Z. A., P. Muñoz-Rodríguez, D. J. Harris, T. Wells, J. R. I. Wood, D. Filer, and R. W. Scotland. 2020. How long does it take to discover a species? Systematics and Biodiversity 18: 784–793. https://doi.org/10.1080/14772000.2020.1751339

The description of a new species is a key step in cataloguing the World’s flora. However, this is only a preliminary stage in a long process of understanding what that species represents. We investigated how long the species discovery process takes by focusing on three key stages: 1, the collection …

Peyre, G., J. Lenoir, D. N. Karger, M. Gomez, A. Gonzalez, O. Broennimann, and A. Guisan. 2020. The fate of páramo plant assemblages in the sky islands of the northern Andes B. Jiménez‐Alfaro [ed.],. Journal of Vegetation Science 31: 967–980. https://doi.org/10.1111/jvs.12898

Aims: Assessing climate change impacts on biodiversity is a main scientific challenge, especially in the tropics, therefore, we predicted the future of plant species and communities on the unique páramo sky islands. We implemented the Spatially Explicit Species Assemblage Modelling framework, by i) …

Joffard, N., F. Massol, M. Grenié, C. Montgelard, and B. Schatz. 2018. Effect of pollination strategy, phylogeny and distribution on pollination niches of Euro‐Mediterranean orchids I. Bartomeus [ed.],. Journal of Ecology 107: 478–490. https://doi.org/10.1111/1365-2745.13013

1.Pollination niches are important components of ecological niches and have played a major role in the diversification of Angiosperms. In this study, we focused on Euro‐Mediterranean orchids, which use diverse pollination strategies and interact with various functional groups of insects. In these or…