Science Enabled by Specimen Data

Uehira, K., and Y. Shimono. 2024. Evaluation of climate conditions and ecological traits that limit the distribution expansion of alien Lolium rigidum in Japan. NeoBiota 96: 89–104. https://doi.org/10.3897/neobiota.96.122752

AbstractInvasive alien plants cause severe global problems; therefore, determining the factors that lead to the success or failure of invasion is a critical question in the field of invasion ecology. In this study, we aimed to determine the factors underlying differences in the distribution range of alien plants in Japan by investigating why Loliummultiflorum thrives in a wide range of habitats while L.rigidum is mainly distributed on sandy beaches. We initially evaluated environmental niche suitability through species distribution modelling and subsequently examined whether species traits influence the differences in range expansion between the two species. We used MaxEnt modelling to identify potential environmental niches for both species. The analysis revealed that L.rigidum was considerably less suited to the Japanese climate compared to L.multiflorum, with high summer precipitation in Japan identified as one of the climatic factors limiting the distribution of L.rigidum. Given that these winter annual plants remain dormant as seeds during summer, in subsequent experiments, we buried seeds in paddy field soil and sandy beach sand during summer and evaluated their survival rate in autumn. The survival rate of L.rigidum seeds was significantly lower than that of L.multiflorum, particularly in paddy soil. Factors contributing to seed mortality may include the decay or early germination of L.rigidum seeds under Japan’s high rainfall conditions. This study emphasises the importance of considering local environmental factors alongside climate niche modelling in the risk assessment of invasive species. Moreover, the integration of species distribution modelling for large-scale evaluations and manipulation experiments for fine-scale assessments proved effective in identifying climatic conditions and species traits influencing the success or failure of alien species invasion.

Calleja-Satrustegui, A., A. Echeverría, I. Ariz, J. Peralta de Andrés, and E. M. González. 2024. Unlocking nature’s drought resilience: a focus on the parsimonious root phenotype and specialised root metabolism in wild Medicago populations. Plant and Soil. https://doi.org/10.1007/s11104-024-06943-w

Abstract  Background and aims Crop wild relatives, exposed to strong natural selection, exhibit effective tolerance traits against stresses. While an aggressive root proliferation phenotype has long been considered advantageous for a range of stresses, it appears to be counterproductive under drought due to its high metabolic cost. Recently, a parsimonious root phenotype, metabolically more efficient, has been suggested to be better adapted to semiarid environments, although it is not clear that this phenotype is a trait exhibited by crop wild relatives. Methods Firstly, we analysed the root phenotype and carbon metabolism in four Medicago crop wild relatives adapted to a semiarid environment and compared them with the cultivated M. truncatula Jemalong (A17). Secondly, we exposed the cultivated (probably the least adapted genotype to aridity) and the wild (the most common one in arid zones) M. truncatula genotypes to water deficit. The carbon metabolism response in different parts of their roots was analysed. Results A reduced carbon investment per unit of root length was a common trait in the four wild genotypes, indicative of an evolution towards a parsimonious root phenotype. During the water deficit experiment, the wild M. truncatula showed higher tolerance to drought, along with a superior ability of its taproot to partition sucrose and enhanced capacity of its fibrous roots to maintain sugar homeostasis. Conclusion A parsimonious root phenotype and the spatial specialization of root carbon metabolism represent two important drought tolerance traits. This work provides relevant findings to understand the response of Medicago species roots to water deficit.

Bradshaw, C. D., D. L. Hemming, T. Mona, W. Thurston, M. K. Seier, D. P. Hodson, J. W. Smith, et al. 2024. Transmission pathways for the stem rust pathogen into Central and East Asia and the role of the alternate host, barberry. Environmental Research Letters 19: 114097. https://doi.org/10.1088/1748-9326/ad7ee3

Abstract After many decades of effective control of stem rust caused by the Puccinia graminis f.sp. tritici, (hereafter Pgt) the reported emergence of race TTKSK/Ug99 of Pgt in Uganda reignited concerns about epidemics worldwide because ∼90% of world wheat cultivars had no resistance to the new race. Since it was initially detected in Uganda in 1998, Ug99 variants have now been identified in thirteen countries in Africa and the Middle East. Stem rust has been a major problem in the past, and concern is increasing about the risk of return to Central and East Asia. Whilst control programs in North America and Europe relied on the use of resistant cultivars in combination with eradication of barberry (Berberis spp.), the alternate host required for the stem rust pathogen to complete its full lifecycle, the focus in East Asia was principally on the use of resistant wheat cultivars. Here, we investigate potential airborne transmission pathways for stem rust outbreaks in the Middle East to reach East Asia using an integrated modelling framework combining estimates of fungal spore deposition from an atmospheric dispersion model, environmental suitability for spore germination, and crop calendar information. We consider the role of mountain ranges in restricting transmission pathways, and we incorporate a representation of a generic barberry species into the lifecycle. We find viable transmission pathways to East Asia from the Middle East to the north via Central Asia and to the south via South Asia and that an initial infection in the Middle East could persist in East Asia for up to three years due to the presence of the alternate host. Our results indicate the need for further assessment of barberry species distributions in East Asia and appropriate methods for targeted surveillance and mitigation strategies should stem rust incidence increase in the Middle East region.

Rincón Barrado, M., M. Perez, T. Villaverde, C. García‐Verdugo, J. Caujapé‐Castells, R. Riina, and I. Sanmartín. 2024. Phylogenomics and phylogeographic model testing using convolutional neural networks reveal a history of recent admixture in the Canarian Kleinia neriifolia. Molecular Ecology 33. https://doi.org/10.1111/mec.17537

Multiple‐island endemics (MIE) are considered ideal natural subjects to study patterns of island colonization that involve recent population‐level genetic processes. Kleinia neriifolia is a Canarian MIE widespread across the archipelago, which exhibits a close phylogenetic relationship with species in northwest Africa and at the other side of the Sahara Desert. Here, we used target sequencing with plastid skimming (Hyb‐Seq), a dense population‐level sampling of K. neriifolia, and representatives of its African–southern Arabian relatives to infer phylogenetic relationships and divergence times at the species and population levels. Using population genetic techniques and machine learning (convolutional neural networks [CNNs]), we reconstructed phylogeographic relationships and patterns of genetic admixture based on a multilocus SNP nuclear dataset. Phylogenomic analysis based on the nuclear dataset identifies the northwestern African Kleinia anteuphorbium as the sister species of K. neriifolia, with divergence starting in the early Pliocene. Divergence from its sister clade, comprising species from the Horn of Africa and southern Arabia, is dated to the arid Messinian period, lending support to the climatic vicariance origin of the Rand Flora. Phylogeographic model testing with CNNs supports an initial colonization of the central island of Tenerife followed by eastward and westward migration across the archipelago, which resulted in the observed east/west phylogeographic split. Subsequent population extinctions linked to aridification events, and recolonization from Tenerife, are proposed to explain the patterns of genetic admixture in the eastern Canary Islands. We demonstrate that CNNs based on SNPs can be used to discriminate among complex scenarios of island migration and colonization.

Pilliod, D. S., M. I. Jeffries, R. S. Arkle, and D. H. Olson. 2024. Climate Futures for Lizards and Snakes in Western North America May Result in New Species Management Issues. Ecology and Evolution 14. https://doi.org/10.1002/ece3.70379

We assessed changes in fundamental climate‐niche space for lizard and snake species in western North America under modeled climate scenarios to inform natural resource managers of possible shifts in species distributions. We generated eight distribution models for each of 130 snake and lizard species in western North America under six time‐by‐climate scenarios. We combined the highest‐performing models per species into a single ensemble model for each scenario. Maps were generated from the ensemble models to depict climate‐niche space for each species and scenario. Patterns of species richness based on climate suitability and niche shifts were calculated from the projections at the scale of the entire study area and individual states and provinces, from Canada to Mexico. Squamate species' climate‐niche space for the recent‐time climate scenario and published known ranges were highly correlated (r = 0.81). Overall, reptile climate‐niche space was projected to move northward in the future. Sixty‐eight percent of species were projected to expand their current climate‐niche space rather than to shift, contract, or remain stable. Only 8.5% of species were projected to lose climate‐niche space in the future, and these species primarily occurred in Mexico and the southwestern U.S. We found few species were projected to lose all suitable climate‐niche space at the state or province level, although species were often predicted to occupy novel areas, such as at higher elevations. Most squamate species were projected to increase their climate‐niche space in future climate scenarios. As climate niches move northward, species are predicted to cross administrative borders, resulting in novel conservation issues for local landowners and natural resource agencies. However, information on species dispersal abilities, landscape connectivity, biophysical tolerances, and habitat suitability is needed to contextualize predictions relative to realized future niche expansions.

Escalante, T., M. Farfán, O. Campos, L. M. Ochoa-Ochoa, K. Flores-Quintal, D. R. García-Vélez, A. L. Medina-Bárcenas, and F. Saenz. 2024. Knowledge shortfalls and the effect of wildfires on biodiversity conservation in Guanajuato, Mexico. Revista Mexicana de Biodiversidad 95: e955323. https://doi.org/10.22201/ib.20078706e.2024.95.5323

Knowledge of shortfalls could modify the geographic distribution patterns and limit the actions to conserve the biodiversity, even in the taxa best known. In addition, forest fires also could modify those patterns, but the potential effects of both factors have not been tested. Our aim was to analyze the effect of the Linnean and Wallacean shortfalls in the first evaluation of wildfire impacts on 22 amphibian and 13 mammal species distributed in Guanajuato, Mexico. We evaluated those shortfalls using the non-parametric estimator Chao2 and the Qs estimator and through maps of species richness patterns. To evaluate the effects of wildfires, we produced a fire recurrence map and quantified the burned area within species distributions and in 24 Protected Natural Areas (PNA) in the state. The Linnean shortfall showed some species missing to record in Guanajuato for both taxa, while the Wallacean shortfall showed poor quality of knowledge. Fire recurrence was high within 5 PNA. The richness patterns affected by fires covered nearly 17% of the surface of Guanajuato. Improving the knowledge of biogeographical patterns could provide better tools to stakeholders to decrease the negative impact of fires within PNA.

Saunders, T. C., I. Larridon, W. J. Baker, R. L. Barrett, F. Forest, E. Françoso, O. Maurin, et al. 2024. Tangled webs and spider‐flowers: Phylogenomics, biogeography, and seed morphology inform the evolutionary history of Cleomaceae. American Journal of Botany 111. https://doi.org/10.1002/ajb2.16399

Premise Cleomaceae is an important model clade for studies of evolutionary processes including genome evolution, floral form diversification, and photosynthetic pathway evolution. Diversification and divergence patterns in Cleomaceae remain tangled as research has been restricted by its worldwide distribution, limited genetic sampling and species coverage, and a lack of definitive fossil calibration points.MethodsWe used target sequence capture and the Angiosperms353 probe set to perform a phylogenetic study of Cleomaceae. We estimated divergence times and biogeographic analyses to explore the origin and diversification of the family. Seed morphology across extant taxa was documented with multifocal image‐stacking techniques and morphological characters were extracted, analyzed, and compared to fossil records.ResultsWe recovered a well‐supported and resolved phylogenetic tree of Cleomaceae generic relationships that includes 236 (~86%) species. We identified 11 principal clades and confidently placed Cleomella as sister to the rest of the family. Our analyses suggested that Cleomaceae and Brassicaceae diverged ~56 mya, and Cleomaceae began to diversify ~53 mya in the Palearctic and Africa. Multiple transatlantic disjunct distributions were identified. Seeds were imaged from 218 (~80%) species in the family and compared to all known fossil species.ConclusionsOur results represent the most comprehensive phylogenetic study of Cleomaceae to date. We identified transatlantic disjunctions and proposed explanations for these patterns, most likely either long‐distance dispersals or contractions in latitudinal distributions caused by climate change over geological timescales. We found that seed morphology varied considerably but mostly mirrored generic relationships.

Marchuk, E. A., A. K. Kvitchenko, L. A. Kameneva, A. A. Yuferova, and D. E. Kislov. 2024. East Asian forest-steppe outpost in the Khanka Lowland (Russia) and its conservation. Journal of Plant Research 137: 997–1018. https://doi.org/10.1007/s10265-024-01570-z

The Khanka Lowland forest-steppe is the most eastern outpost of the Eurasian steppe biome. It includes unique grassland plant communities with rare steppe species. These coenosis have changed under the influence of anthropogenic activity, especially during the last 100 years and included both typical steppe species and nemoral mesophytic species. To distinguish these ecological groups of plants the random forest method with three datasets of environmental variables was applied. Specifically, a model of classification with the most important bioindices to predict a mesophytic ecological group of plants with a sensitivity greater than 80% was constructed. The data demonstrated the presence of steppe species that arrived at different times in the Primorye Territory. Most of these species are associated with the Mongolian-Daurian relict steppe complex and habit in the Khanka Lowland. Other species occur only in mountains in Primorye Territory and do not persist in the Khanka Lowland. These findings emphasize the presence of relict steppe communities with a complex of true steppe species in the Khanka Lowland. Steppe communities exhibit features of anthropogenic influence definitely through the long land use period but are not anthropogenic in origin. The most steppe species are located at the eastern border of distribution in the Khanka Lowlands and are valuable in terms of conservation and sources of information about steppe species origin and the emergence of the steppe biome as a whole.

Monroy-Vilchis, O., G. A. González-Desales, Á. Balbuena-Serrano, J. Robles-Rodríguez, and M. M. Zarco-González. 2024. Distribución potencial de <i>Agkistrodon bilineatus</i> (Squamata: Viperidae) y primeros registros en el Centro de México. Caldasia 46: 361–370. https://doi.org/10.15446/caldasia.v46n2.101348

Agkistrodon bilineatus is a viperid snake with a broad geographic range in Mexico and Central America. Because this species has potent venom and is categorized as Near Threatened on the Red List of Threatened Species of the International Union for Conservation of Nature, understanding its habitat associations and distribution will contribute to both human health and conservation decisions internationally. Based on a comprehensive review of literature and museum records, in addition to our fieldwork, we built the first distribution model for A. bilineatus. Our presence-only consensus model exclusively incorporated contemporary records for the species (from 1980 to 2022, n = 36). The variables that contributed most strongly to the consensus model were: (a) distance to deciduous broadleaf forest, (b) human population density, (c) elevation, (d) precipitation of the wettest quarter, and (e) percentage of herbaceous cover. Of the high-probability distribution area for A. bilineatus predicted by the model, 72.9 % is in Mexico, 12.7 % in Honduras, 9.1 % in Guatemala and 5.2 % in El Salvador. Of the A. bilineatus historical records (those pre-1980), 92.3 % (36/39) were within the high-probability area predicted by the model, indicating either strong model performance or overprediction. Included in our modelling effort were the first two records for A. bilineatus from the State of Mexico, which increases the number of reptile species to 102 in this State. We briefly discuss the implications of our work for human medical treatment and improved conservation assessments for this species, which experiences many environmental threats. 

López-Reyes, K., C. Yáñez-Arenas, and F. Villalobos. 2024. Exploring the causes underlying the latitudinal variation in range sizes: Evidence for Rapoport’s rule in spiny lizards (genus Sceloporus) B. K. Acharya [ed.],. PLOS ONE 19: e0306832. https://doi.org/10.1371/journal.pone.0306832

Species’ range size is a fundamental unit of analysis in biodiversity research, given its association with extinction risk and species richness. One of its most notable patterns is its positive relationship with latitude, which has been considered an ecogeographical rule called Rapoport’s rule. Despite this rule being confirmed for various taxonomic groups, its validity has been widely discussed and several taxa still lack a formal assessment. Different hypotheses have been proposed to explain their potential mechanisms, with those related to temperature and elevational being the most supported thus far. In this study, we employed two level of analyses (cross-species and assemblage) to investigate the validity of Rapoport’s rule in spiny lizards (genus Sceloporus). Additionally, we evaluated four environmental-related hypotheses (minimum temperature, temperature variability, temperature stability since the last glacial maximum, and elevation) posed to explain such pattern, contrasting our results to those patterns expected under a null model of range position. Our results provided support for Rapoport’s rule at both levels of analyses, contrasting with null expectations. Consistently, minimum temperature and elevation were the most relevant variables explaining the spatial variation in range size. At the cross-species level, our null simulations revealed that both variables deviated significantly from random expectations. Conversely, at the assemblage level, none of the variables were statistically different from the expected relationships. We discussed the implication of our findings in relation to the ecology and evolution of spiny lizards.