Science Enabled by Specimen Data

Ramirez-Villegas, J., Khoury, C. K., Achicanoy, H. A., Diaz, M. V., Mendez, A. C., Sosa, C. C., Kehel, Z., Guarino, L., Abberton, M., Aunario, J., Awar, B. A., Alarcon, J. C., Amri, A., Anglin, N. L., Azevedo, V., Aziz, K., Capilit, G. L., Chavez, O., Chebotarov, D., … Zavala, C. (2022). State of ex situ conservation of landrace groups of 25 major crops. Nature Plants. https://doi.org/10.1038/s41477-022-01144-8 https://doi.org/10.1038/s41477-022-01144-8

Crop landraces have unique local agroecological and societal functions and offer important genetic resources for plant breeding. Recognition of the value of landrace diversity and concern about its erosion on farms have led to sustained efforts to establish ex situ collections worldwide. The degree to which these efforts have succeeded in conserving landraces has not been comprehensively assessed. Here we modelled the potential distributions of eco-geographically distinguishable groups of landraces of 25 cereal, pulse and starchy root/tuber/fruit crops within their geographic regions of diversity. We then analysed the extent to which these landrace groups are represented in genebank collections, using geographic and ecological coverage metrics as a proxy for genetic diversity. We find that ex situ conservation of landrace groups is currently moderately comprehensive on average, with substantial variation among crops; a mean of 63% ± 12.6% of distributions is currently represented in genebanks. Breadfruit, bananas and plantains, lentils, common beans, chickpeas, barley and bread wheat landrace groups are among the most fully represented, whereas the largest conservation gaps persist for pearl millet, yams, finger millet, groundnut, potatoes and peas. Geographic regions prioritized for further collection of landrace groups for ex situ conservation include South Asia, the Mediterranean and West Asia, Mesoamerica, sub-Saharan Africa, the Andean mountains of South America and Central to East Asia. With further progress to fill these gaps, a high degree of representation of landrace group diversity in genebanks is feasible globally, thus fulfilling international targets for their ex situ conservation. By analysing the state of representation of traditional varieties of 25 major crops in ex situ repositories, this study demonstrates conservation progress made over more than a half-century and identifies the gaps remaining to be filled.

Pang, S. E. H., Zeng, Y., De Alban, J. D. T., & Webb, E. L. (2022). Occurrence–habitat mismatching and niche truncation when modelling distributions affected by anthropogenic range contractions. Diversity and Distributions. Portico. https://doi.org/10.1111/ddi.13544 https://doi.org/10.1111/ddi.13544

Aims Human-induced pressures such as deforestation cause anthropogenic range contractions (ARCs). Such contractions present dynamic distributions that may engender data misrepresentations within species distribution models. The temporal bias of occurrence data—where occurrences represent distributions before (past bias) or after (recent bias) ARCs—underpins these data misrepresentations. Occurrence–habitat mismatching results when occurrences sampled before contractions are modelled with contemporary anthropogenic variables; niche truncation results when occurrences sampled after contractions are modelled without anthropogenic variables. Our understanding of their independent and interactive effects on model performance remains incomplete but is vital for developing good modelling protocols. Through a virtual ecologist approach, we demonstrate how these data misrepresentations manifest and investigate their effects on model performance. Location Virtual Southeast Asia. Methods Using 100 virtual species, we simulated ARCs with 100-year land-use data and generated temporally biased (past and recent) occurrence datasets. We modelled datasets with and without a contemporary land-use variable (conventional modelling protocols) and with a temporally dynamic land-use variable. We evaluated each model's ability to predict historical and contemporary distributions. Results Greater ARC resulted in greater occurrence–habitat mismatching for datasets with past bias and greater niche truncation for datasets with recent bias. Occurrence–habitat mismatching prevented models with the contemporary land-use variable from predicting anthropogenic-related absences, causing overpredictions of contemporary distributions. Although niche truncation caused underpredictions of historical distributions (environmentally suitable habitats), incorporating the contemporary land-use variable resolved these underpredictions, even when mismatching occurred. Models with the temporally dynamic land-use variable consistently outperformed models without. Main conclusions We showed how these data misrepresentations can degrade model performance, undermining their use for empirical research and conservation science. Given the ubiquity of ARCs, these data misrepresentations are likely inherent to most datasets. Therefore, we present a three-step strategy for handling data misrepresentations: maximize the temporal range of anthropogenic predictors, exclude mismatched occurrences and test for residual data misrepresentations.

Williams, C. J. R., Lunt, D. J., Salzmann, U., Reichgelt, T., Inglis, G. N., Greenwood, D. R., Chan, W., Abe‐Ouchi, A., Donnadieu, Y., Hutchinson, D. K., Boer, A. M., Ladant, J., Morozova, P. A., Niezgodzki, I., Knorr, G., Steinig, S., Zhang, Z., Zhu, J., Huber, M., & Otto‐Bliesner, B. L. (2022). African hydroclimate during the early Eocene from the DeepMIP simulations. Paleoceanography and Paleoclimatology. Portico. https://doi.org/10.1029/2022pa004419 https://doi.org/10.1029/2022pa004419

The early Eocene (∼56‐48 million years ago) is characterised by high CO2 estimates (1200‐2500 ppmv) and elevated global temperatures (∼10 to 16°C higher than modern). However, the response of the hydrological cycle during the early Eocene is poorly constrained, especially in regions with sparse data coverage (e.g. Africa). Here we present a study of African hydroclimate during the early Eocene, as simulated by an ensemble of state‐of‐the‐art climate models in the Deep‐time Model Intercomparison Project (DeepMIP). A comparison between the DeepMIP pre‐industrial simulations and modern observations suggests that model biases are model‐ and geographically dependent, however these biases are reduced in the model ensemble mean. A comparison between the Eocene simulations and the pre‐industrial suggests that there is no obvious wetting or drying trend as the CO2 increases. The results suggest that changes to the land sea mask (relative to modern) in the models may be responsible for the simulated increases in precipitation to the north of Eocene Africa. There is an increase in precipitation over equatorial and West Africa and associated drying over northern Africa as CO2 rises. There are also important dynamical changes, with evidence that anticyclonic low‐level circulation is replaced by increased south‐westerly flow at high CO2 levels. Lastly, a model‐data comparison using newly‐compiled quantitative climate estimates from palaeobotanical proxy data suggests a marginally better fit with the reconstructions at lower levels of CO2.

Pirie, M. D., Blackhall‐Miles, R., Bourke, G., Crowley, D., Ebrahim, I., Forest, F., Knaack, M., Koopman, R., Lansdowne, A., Nürk, N. M., Osborne, J., Pearce, T. R., Rohrauer, D., Smit, M., & Wilman, V. (2022). Preventing species extinctions: A global conservation consortium for Erica. PLANTS, PEOPLE, PLANET. Portico. https://doi.org/10.1002/ppp3.10266 https://doi.org/10.1002/ppp3.10266

Societal Impact Statement Human-caused habitat destruction and transformation is resulting in a cascade of impacts to biological diversity, of which arguably the most fundamental is species extinctions. The Global Conservation Consortia (GCC) are a means to pool efforts and expertise across national boundaries and between disciplines in the attempt to prevent such losses in focal plant groups. GCC Erica coordinates an international response to extinction threats in one such group, the heaths, or heathers, of which hundreds of species are found only in South Africa's spectacularly diverse Cape Floristic Region. Summary Effectively combating the biodiversity crisis requires coordinated conservation efforts. Botanic Gardens Conservation International (BGCI) and numerous partners have established Global Conservation Consortia (GCC) to collaboratively develop and implement comprehensive conservation strategies for priority threatened plant groups. Through these networks, institutions with specialised collections and staff can leverage ongoing work to optimise impact for threatened plant species. The genus Erica poses a challenge similar in scale to that of the largest other GCC group, Rhododendron, but almost 700 of the around 800 known species of Erica are concentrated in a single biodiversity hotspot, the Cape Floristic Region (CFR) of South Africa. Many species are known to be threatened, suffering the immediate impacts of habitat destruction, invasive species, changes in natural fire regimes and climate change. Efforts to counter these threats face general challenges: disproportionate burden of in situ conservation falling on a minority of the community, limited knowledge of species-rich groups, shortfalls in assessing and monitoring threat, lack of resources for in situ and limitations of knowledge for ex situ conservation efforts and in communicating the value of biological diversity to a public who may never encounter it in the wild. GCC Erica brings together the world's Erica experts, conservationists and the botanical community, including botanic gardens, seed banks and organisations in Africa, Madagascar, Europe, the United States, Australia and beyond. We are collaboratively pooling our unique sets of skills and resources to address these challenges in working groups for conservation prioritisation, conservation in situ, horticulture, seed banking, systematic research and outreach.

Charitonidou, M., Kougioumoutzis, K., Karypidou, M. C., & Halley, J. M. (2022). ‘Fly to a Safer North’: Distributional Shifts of the Orchid Ophrys insectifera L. Due to Climate Change. Biology, 11(4), 497. https://doi.org/10.3390/biology11040497 https://doi.org/10.3390/biology11040497

Numerous orchid species around the world have already been affected by the ongoing climate change, displaying phenological alterations and considerable changes to their distributions. The fly orchid (Ophrys insectifera L.) is a well-known and distinctive Ophrys species in Europe, with a broad distribution across the continent. This study explores the effects of climate change on the range of O. insectifera, using a species distribution models (SDMs) framework that encompasses different climatic models and scenarios for the near- and long-term future. The species’ environmentally suitable area is projected to shift northwards (as expected) but downhill (contrary to usual expectations) in the future. In addition, an overall range contraction is predicted under all investigated combinations of climatic models and scenarios. While this is moderate overall, it includes some regions of severe loss and other areas with major gains. Specifically, O. insectifera is projected to experience major area loss in its southern reaches (the Balkans, Italy and Spain), while it will expand its northern limits to North Europe, with the UK, Scandinavia, and the Baltic countries exhibiting the largest gains.View Full-Text

Filartiga, A. L., Klimeš, A., Altman, J., Nobis, M. P., Crivellaro, A., Schweingruber, F., & Doležal, J. (2022). Comparative anatomy of leaf petioles in temperate trees and shrubs: the role of plant size, environment and phylogeny. Annals of Botany. https://doi.org/10.1093/aob/mcac014 https://doi.org/10.1093/aob/mcac014

Background and Aims Petioles are important plant organs connecting stems with leaf blades and affecting light-harvesting ability of the leaf as well as transport of water, nutrients and biochemical signals. Despite the high diversity in petiole size, shape and anatomy, little information is availabl…

Vasconcelos, T., Boyko, J. D., & Beaulieu, J. M. (2021). Linking mode of seed dispersal and climatic niche evolution in flowering plants. Journal of Biogeography. doi:10.1111/jbi.14292 https://doi.org/10.1111/jbi.14292

Aim: Due to the sessile nature of flowering plants, movements to new geographical areas occur mainly during seed dispersal. Frugivores tend to be efficient dispersers because animals move within the boundaries of their preferable niches, so seeds are more likely to be transported to environments tha…

Xue, T., Gadagkar, S. R., Albright, T. P., Yang, X., Li, J., Xia, C., … Yu, S. (2021). Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation, 32, e01885. doi:10.1016/j.gecco.2021.e01885 https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…

Wang, C.-J., & Wan, J.-Z. (2021). Functional trait perspective on suitable habitat distribution of invasive plant species at a global scale. Perspectives in Ecology and Conservation. doi:10.1016/j.pecon.2021.07.002 https://doi.org/10.1016/j.pecon.2021.07.002

Plant invasion has been proved to threaten biodiversity conservation and ecosystem maintenance at a global scale. It is a challenge to project suitable habitat distributions of invasive plant species (IPS) for invasion risk assessment at large spatial scales. Interaction outcomes between native and …

DeLaMater, D. S., Couture, J. J., Puzey, J. R., & Dalgleish, H. J. (2021). Range‐wide variations in common milkweed traits and their effect on monarch larvae. American Journal of Botany, 108(3), 388–401. doi:10.1002/ajb2.1630 https://doi.org/10.1002/ajb2.1630

Premise: Leaf economic spectrum (LES) theory has historically been employed to inform vegetation models of ecosystem processes, but largely neglects intraspecific variation and biotic interactions. We attempt to integrate across environment–plant trait–herbivore interactions within a species at a ra…