Science Enabled

Rozefelds, A. C., Stull, G., Hayes, P., & Greenwood, D. R. (2020). The fossil record of Icacinaceae in Australia supports long-standing Palaeo-Antarctic rainforest connections in southern high latitudes. Historical Biology, 1–11. doi:10.1080/08912963.2020.1832089 https://doi.org/10.1080/08912963.2020.1832089

Fossil fruits of Icacinaceae are recorded from two Cenozoic sites in Australia, at Launceston in northern Tasmania and the Poole Creek palaeochannel in northern South Australia, representing the first report of fossil Icacinaceae from Australia. The Launceston material includes two endocarps with br…

Yi, S., Jun, C.-P., Jo, K., Lee, H., Kim, M.-S., Lee, S. D., … Lim, J. (2020). Asynchronous multi-decadal time-scale series of biotic and abiotic responses to precipitation during the last 1300 years. Scientific Reports, 10(1). doi:10.1038/s41598-020-74994-x https://doi.org/10.1038/s41598-020-74994-x

Loading...

Benavides, L. R., Pinto-da-Rocha, R., & Giribet, G. (2020). The phylogeny and evolution of the flashiest of the armored harvestmen (Arachnida: Opiliones). Systematic Biology. doi:10.1093/sysbio/syaa080 https://doi.org/10.1093/sysbio/syaa080

Gonyleptoidea, largely restricted to the Neotropics, constitutes the most diverse superfamily of Opiliones and includes the largest and flashiest representatives of this arachnid order. However, the relationships among its main lineages (families and superfamilies) and the timing of their origin are…

Seaborn, T., Goldberg, C. S., & Crespi, E. J. (2020). Drivers of distributions and niches of North American cold‐adapted amphibians: evaluating both climate and land use. Ecological Applications. doi:10.1002/eap.2236 https://doi.org/10.1002/eap.2236

Species distribution estimates are often used to understand the niche of a species; however, these are often based solely on climatic predictors. When the influences of biotic factors are ignored, erroneous inferences about range and niche may be made. We aimed to integrate climate data with a uniqu…

Larridon, I., Galán Díaz, J., Bauters, K., & Escudero, M. (2020). What drives diversification in a pantropical plant lineage with extraordinary capacity for long‐distance dispersal and colonization? Journal of Biogeography. doi:10.1111/jbi.13982 https://doi.org/10.1111/jbi.13982

Aim: Colonization of new areas may entail shifts in diversification rates linked to biogeographical movement (dispersification), which may involve niche evolution if species were not exapted to new environments. Scleria (Cyperaceae) includes c. 250 species and has a pantropical distribution suggesti…

Zizka, A., Antunes Carvalho, F., Calvente, A., Rocio Baez-Lizarazo, M., Cabral, A., Coelho, J. F. R., … Antonelli, A. (2020). No one-size-fits-all solution to clean GBIF. PeerJ, 8, e9916. doi:10.7717/peerj.9916 https://doi.org/10.7717/peerj.9916

Species occurrence records provide the basis for many biodiversity studies. They derive from georeferenced specimens deposited in natural history collections and visual observations, such as those obtained through various mobile applications. Given the rapid increase in availability of such data, th…

Li, X., Li, B., Wang, G., Zhan, X., & Holyoak, M. (2020). Deeply digging the interaction effect in multiple linear regressions using a fractional-power interaction term. MethodsX, 7, 101067. doi:10.1016/j.mex.2020.101067 https://doi.org/10.1016/j.mex.2020.101067

In multiple regression Y ~ β0 + β1X1 + β2X2 + β3X1 X2 + ɛ., the interaction term is quantified as the product of X1 and X2. We developed fractional-power interaction regression (FPIR), using βX1M X2N as the interaction term. The rationale of FPIR is that the slopes of Y-X1 regression along the X2 gr…

Newbold, T., Oppenheimer, P., Etard, A., & Williams, J. J. (2020). Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nature Ecology & Evolution. doi:10.1038/s41559-020-01303-0 https://doi.org/10.1038/s41559-020-01303-0

Global biodiversity is undergoing rapid declines, driven in large part by changes to land use and climate. Global models help us to understand the consequences of environmental changes for biodiversity, but tend to neglect important geographical variation in the sensitivity of biodiversity to these …

Mejía-Falla, P. A., Castro, E., Bolaños, N., Caldas, J. P., Ballesteros, C., Bent-Hooker, H., … Navia, A. F. (2020). Richness and distribution patterns of elasmobranchs in the San Andres, Providencia and Santa Catalina Archipelago: is this area a hotspot of these species in the greater Caribbean? Environmental Biology of Fishes. doi:10.1007/s10641-020-01029-9 https://doi.org/10.1007/s10641-020-01029-9

Hotspots identification can be used to establish protected or priority areas for conservation at different geographic scales. We aimed to determine if San Andres, Providencia and Santa Catalina Archipelago could be considered as a hotspot of elasmobranch diversity within the Greater Caribbean. For t…

Cross, A. T., Krueger, T. A., Gonella, P. M., Robinson, A. S., & Fleischmann, A. S. (2020). Conservation of carnivorous plants in the age of extinction. Global Ecology and Conservation, e01272. doi:10.1016/j.gecco.2020.e01272 https://doi.org/10.1016/j.gecco.2020.e01272

Carnivorous plants (CPs)—those possessing specific strategies to attract, capture and kill animal prey and obtain nutrition through the absorption of their biomass—are harbingers of anthropogenic degradation and destruction of ecosystems. CPs exhibit highly specialised and often very sensitive ecolo…