Science Enabled

Wieringa, J. G., Carstens, B. C., & Gibbs, H. L. (2021). Predicting migration routes for three species of migratory bats using species distribution models. PeerJ, 9, e11177. doi:10.7717/peerj.11177 https://doi.org/10.7717/peerj.11177

Understanding seasonal variation in the distribution and movement patterns of migratory species is essential to monitoring and conservation efforts. While there are many species of migratory bats in North America, little is known about their seasonal movements. In terms of conservation, this is impo…

Allstädt, F. J., Koutsodendris, A., Appel, E., Rösler, W., Reichgelt, T., Kaboth-Bahr, S., … Pross, J. (2021). Late Pliocene to early Pleistocene climate dynamics in western North America based on a new pollen record from paleo-Lake Idaho. Palaeobiodiversity and Palaeoenvironments. doi:10.1007/s12549-020-00460-1 https://doi.org/10.1007/s12549-020-00460-1

Marked by the expansion of ice sheets in the high latitudes, the intensification of Northern Hemisphere glaciation across the Plio/Pleistocene transition at ~ 2.7 Ma represents a critical interval of late Neogene climate evolution. To date, the characteristics of climate change in North America duri…

Klages, J. P., Salzmann, U., Bickert, T., Hillenbrand, C.-D., Gohl, K., … Dziadek, R. (2020). Temperate rainforests near the South Pole during peak Cretaceous warmth. Nature, 580(7801), 81–86. doi:10.1038/s41586-020-2148-5 https://doi.org/10.1038/s41586-020-2148-5

The mid-Cretaceous period was one of the warmest intervals of the past 140 million years1,2,3,4,5, driven by atmospheric carbon dioxide levels of around 1,000 parts per million by volume6. In the near absence of proximal geological records from south of the Antarctic Circle, it is disputed whether p…

Crespo-Mendes, N., Laurent, A., & Hauschild, M. Z. (2018). Effect factors of terrestrial acidification in Brazil for use in Life Cycle Impact Assessment. The International Journal of Life Cycle Assessment. doi:10.1007/s11367-018-1560-7 https://doi.org/10.1007/s11367-018-1560-7

Purpose:In Life Cycle Impact Assessment, atmospheric fate factors, soil exposure factors, and effect factors are combined to characterize potential impacts of acidifying substances in terrestrial environments. Due to the low availability of global data sets, effect factors (EFs) have been reported a…

Crespo-Mendes, N., Laurent, A., Bruun, H. H., & Hauschild, M. Z. (2019). Relationships between plant species richness and soil pH at the level of biome and ecoregion in Brazil. Ecological Indicators, 98, 266–275. doi:10.1016/j.ecolind.2018.11.004 https://doi.org/10.1016/j.ecolind.2018.11.004

Soil pH has been used to indicate how changes in soil acidity can influence species loss. The correlation between soil pH and plant species richness has mainly been studied in North America and Europe, while there is a lack of studies exploring Tropical floras. Here, our aim was therefore to investi…

Antonelli, A., Zizka, A., Carvalho, F. A., Scharn, R., Bacon, C. D., Silvestro, D., & Condamine, F. L. (2018). Amazonia is the primary source of Neotropical biodiversity. Proceedings of the National Academy of Sciences, 115(23), 6034–6039. doi:10.1073/pnas.1713819115 https://doi.org/10.1073/pnas.1713819115

The American tropics (the Neotropics) are the most species-rich realm on Earth, and for centuries, scientists have attempted to understand the origins and evolution of their biodiversity. It is now clear that different regions and taxonomic groups have responded differently to geological and climati…